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Influence of Workers' Well-being on Productivity in the Context of
Industry 5.0: Applying a Competitive Technology Intelligence
Methodology

by

Sofia Pamela Recinos Dorst

Abstract

In the new era of Industry 5.0, a human-centric approach is being adopted,
emphasizing the importance of creating workplaces that support efficiency and worker
well-being. However, this evolution raises questions about how to create a human-
centered work environment that prioritizes the well-being and, consequently,
productivity. To address this issue, this thesis applies the Competitive Technology
Intelligence (CTI) methodology to offer guidance and recommendations in this context
by identifying trends related to the human-centric pillar of Industry 5.0, with a focus on
the influence of workers’ well-being on productivity. Furthermore, this study proposes
the incorporation of the PRISMA methodology into the CTl methodology with the
objective of improving the reproducibility and robustness of the CTI process. As a
result, the following trends were determined: (i) Facilitating effective and natural
communication between robots and humans, (ii) Modifying and optimizing the work
environment to enhance workers' well-being, (iii) Customizing technology to meet
operators' individual needs, and (iv) Monitoring technologies that assess workers' real-
time states and provide accurate feedback. This study offers valuable insights by
providing actionable recommendations centered on human-centricity within the

framework of Industry 5.0.
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Chapter 1: Introduction

This chapter begins by outlining the motivation behind this research. It then defines
the problem statement within the Industry 5.0 framework, emphasizing its human-
centric approach. The chapter presents the Competitive Technology Intelligence (CTI)
methodology and delineates both general and specific objectives, along with the
research questions, scope, and an overview of the proposed solutions.

1.1 Motivation

Industry 4.0 has enabled organizations to achieve significant advancements in
automation and performance through the adoption of innovative and transformative
technologies (Rahardjo, Wang, Lo, & Chu, 2024). As noted by Polivka & Dvorakova
(2021), the nine technological pillars of Industry 4.0 include Big Data, autonomous
(collaborative) robots, simulations, system integration, the Internet of things, cyber-
physical systems, cloud technologies, additive manufacturing, and augmented reality.
These technological developments have revolutionized industries and led to fast
growth. Nevertheless, amid these innovations, there is a need for a more holistic
approach that considers human factors (Ling, et al., 2024).

Industry 5.0 represents a transformative shift that emphasizes sustainability and work-
life balance. It enhances worker well-being by fostering collaboration between humans
and machines, enabling both to thrive in harmony (Capponi, Gervasi, Mastrogiacomo,
& Franceschini, 2024). Nonetheless, this evolution raises questions about how to
create a human-centered work environment that prioritizes well-being and,

consequently, productivity.

The motivation behind this research stems from a gap in existing studies concerning
Industry 5.0, a relatively new concept that has garnered considerable attention since
the European Commission introduced it in 2019. Additionally, the subjective nature of
human-centricity within Industry 5.0 creates ambiguity surrounding its practical
implementation in industrial settings (Alves, Lima, & Gaspar, 2023). Consequently,

this research aims to empower organizations and academic institutions to recognize
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and seize the opportunities offered by Industry 5.0. by assessing the human-centric
approach in industrial environments, with a specific focus on the influence of workers’

well-being on productivity.

1.2 Problem Statement

Staying updated on the latest innovations and trends is essential for a company to
maintain a competitive edge in the market. Competitive Technology Intelligence is a
systematic process that aids decision-making by monitoring the competitive and
technological landscape to provide early detection of emerging technologies and
innovations (Das, 2010). Ultimately, it supports organizations in maintaining a
competitive advantage and navigating the complexities of their industries.

In the manufacturing sector, new technologies should address both individual and
collective needs while meeting production requirements (Coronado, et al., 2022).
Industry 5.0 introduces a framework that emphasizes a human-centric approach,
prioritizing human needs and interests in production processes (Breque, De Nul, &
Petridis, 2021). Nevertheless, Alves et al. (2023) highlight that the concept of Industry
5.0 has not been fully integrated into the industry, as it persists in confronting
challenges associated with Industry 4.0. Consequently, this situation renders
researchers and companies without sufficient guidance to successfully navigate the
landscape of Industry 5.0 and facilitate the transition from Industry 4.0 to Industry 5.0

within various organizations and sectors.
By applying the Competitive Technology Intelligence methodology, this research aims

to offer guidance and recommendations for companies pursuing Industry 5.0 to adopt

a more human-centric approach that prioritizes workers' well-being and productivity.
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1.3 Research Context

1.3.1 Industry 4.0

Industrial revolutions have persistently adapted to the necessity for change, leading
to increased productivity facilitated by technological advancements and automation
(Verma, 2024). Industry 5.0 represents the latest version of this concept. To
comprehend its evolution over the years and the introduction of Industry 5.0, a
concise summary of the challenges and benefits encountered by its predecessors will
be presented.

The Fourth Industrial Revolution centered on Human-Machine Interaction, guiding a
wave of technological advancements that transformed industrial manufacturing
processes (Sony, Anthony, Mc Dermott, & Garza-Reyes, 2021). It relied heavily on
enhancing efficiency and productivity through automation and data exchange
technologies (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). In this
section, some of the benefits and disadvantages that Industry 4.0 propelled for the

creation of Industry 5.0 will be mentioned.

One of the benefits that Industry 4.0 has brought to industries is a broader range of
new job opportunities (Grybauskas, Stefanini, & Ghobakhloo, 2022). Consecutively,
increasing the demand for human resources with new requirements as traditional job
roles undergo significant transformation (Sony, Anthony, Mc Dermott, & Garza-
Reyes, 2021). As a result, this leads to the creation of jobs, mostly in engineering,
technician roles, production management, and robotics (Macpherson, Werner, & R.
Mey, 2022).

Another notable benefit is an increase in collaboration between the government and
companies (Grybauskas, Stefanini, & Ghobakhloo, 2022). This is essential for
overcoming current obstacles when implementing new technologies or work

structures, such as Industry 5.0.

On the contrary, a significant disadvantage is that Industry 4.0 created an unequal
division of labor, where high skills and high technological knowledge would be
necessary for proper performance in the work areas (Grybauskas, Stefanini, &

Ghobakhloo, 2022). The underlying rationale for this phenomenon is that, in the
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context of Industry 4.0, workers are required to modify and enhance their skill sets in
response to advancing technologies. Consequently, in Industry 5.0, the goal is to
adapt technology to meet the employees' existing skills and needs. “Rather than
asking what we can do with new technology, we ask what the technology can do for
us. Rather than asking the industry worker to adapt his or her skills to the needs of
rapidly evolving technology, we want to use technology to adapt the production
process to the needs of the worker” (Breque, De Nul, & Petridis, 2021).

However, even workers with advanced digital skills may not be safe from digital
replacement. Grybauskas et al. (2022) also suggest that these positions could easily
be replaced by technologies and algorithms in the future, offering another reason for

the industry to evolve.

Furthermore, the problems are present not only in the workplace but also extend to
the individual level of employees. In the academic literature, researchers began to
mention the influence of Industry 4.0 on workers’ well-being (Zorzenon et al., 2022)
and, therefore, on production rates. In 2017, Christensen et al. (2017) claimed that
employee well-being is a positive element that can enhance productivity in a
company. The International Labour Organization (ILO) also acknowledges that:
“productivity growth and improvements in well-being are closely interconnected and
can create mutually reinforcing positive feedback loops.” (See Figure 1). In other
words, employee well-being can influence their performance at work, and work, in

turn, can influence their well-being.
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Well-being || Productivity

\_ A M J

A

Figure 1. Relation between well-being and productivity.
(Own elaboration, 2024)

This aspect contributed to the list of reasons why a change in organizations was
necessary. For example, Kovacs (2018) mentioned that a structural change is needed
for sustainable development and promotion of well-being in the complexity of Industry

4.0 and digital transformation.

In summary, Industry 4.0 contributed to the creation of new jobs, higher wages due
to increased demands, and higher company productivity. However, over the years,
researchers and industry leaders have identified areas for further improvement within
this framework. A combination of the gaps in Industry 4.0 and the new needs of the
environment and society encouraged the creation of Industry 5.0, which supports a
human-centric, sustainable, and resilient approach to technology.

1.3.2 Industry 5.0

Due to automation and the rapid adoption of technology, a growing need for new skill
sets, job roles, and work models became necessary (Schwab & Zahidi, 2020). The
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Directorate for Prosperity within DG Research and Innovation organized two virtual
workshops for participants from research and technology organizations throughout
Europe, during which they explored the concept of Industry 5.0 (Mdller, 2020).

Industry 5.0 is centered around three key elements: Human-Centricity, Resilience,
and Sustainability (See Figure 2) (Breque, De Nul, & Petridis, 2021). Unlike its
predecessors, this industry aims to reshape the industrial landscape by becoming a
resilient source of prosperity, producing within planetary boundaries and placing
workers’ well-being at the center of the production center (Xu, Lu, Vogel-Heuser, &
Wang, 2021). While Industry 5.0 presents a novel approach, it remains fundamentally
rooted in Industry 4.0 and is not entirely independent of its predecessor.

Human-
Centricity

eHuman Needs

Resilience Sustainability

eFlexible and eRespect
adaptable to planetary
changes boundaries

Figure 2. Key Elements of Industry 5.

Adapted from: Breque, M., De Nul, L., & Petridis, A. (2021). Industry 5.0: Towards a
sustainable, human-centric, and resilient European industry. European Commission
Directorate-General for Research and Innovation, 1st edition, pp. X-X. CC BY 4.0.
Available at https://doi.org/10.2777/308407
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A human-centric approach aims to center workers' well-being at the center of the
production process (Breque, De Nul, & Petridis, 2021). It focuses on evolving
technology to adapt to worker skills instead of requiring the worker to acquire new
skills to adapt to technology. In addition, it upholds workers' fundamental rights, which

correspond to level 1 of the Industrial Human Needs Pyramid, as shown in Figure 4.

Another key element of Industry 5.0 is sustainability. Rapid human development,
uncontrolled population growth, increased greenhouse gas emissions, and
biodiversity loss have disrupted Earth's balance (Barnosell & Pozo, 2024). Planetary
boundaries define the limits within which humanity can safely operate by recognizing
the constraints of the Earth's systems (Rockstrom, et al., 2009). Another innovative
key element of Industry 5.0 is being sustainable by respecting planetary boundaries
to avoid endangering future generations’ needs (Breque, De Nul, & Petridis, 2021)

Finally, the authors of Industry 5.0 define resilience as “the need to develop a higher
degree of robustness in industrial production, arming it better against disruptions and
making sure it can provide and support critical infrastructure in times of crisis”
(Breque, De Nul, & Petridis, 2021). This implies that production and business
processes must be adaptable during unexpected, challenging periods.

To achieve the goals of Industry 5.0, it is important to incorporate the tools of Industry
4.0, as well as to develop new technologies. This requires a unified approach
between humans and machines. According to Muller (2020), technologies supporting
Industry 5.0 are characterized by providing human-centric solutions and human-
machine interaction, bio-inspired technologies and smart materials, real-time-based
digital twins and simulation, cyber-safe data transmission, storage and analysis
technologies, Atrtificial Intelligence and Technologies for energy efficiency and
trustworthy autonomy (See Figure 3). Each of them can unfold its potential when
combined with others (Muller, 2020).
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Enabling
Technologies

Physical World
y Virtual World
Bio-inspired Technologies
and Smart Materials Data Transmission, Storage and
Analysis
Energy Efficiency and Artificial Intelligence (AI)
Autonomy

Human Machine Interacction

Digital Twins and Simulation

Figure 3. Enabling Technologies for Industry 5.0.
(Own elaboration, 2024)

Furthermore, integrating technologies, particularly in the context of Industry 5.0, can
actively support well-being by reducing repetitive tasks, enhancing safety, and
encouraging fulfilling work environments (Breque, De Nul, & Petridis, 2021). These
technologies are also anticipated to promote sustainability and create a resilient

environment.

In conclusion, the European Commission (2021) emphasized that a renewed and
broader sense of purpose will characterize Industry 5.0. This new approach will
extend beyond merely producing goods and services for profit, focusing instead on
promoting prosperity in social, environmental, and societal aspects. However, it is
essential to recognize that the fifth revolution complements Industry 4.0 by leveraging
the advancements made during that era rather than replacing it (Breque, De Nul, &
Petridis, 2021). The new revolution builds upon this foundation to assist in a new era
of workers' well-being and environmental consciousness, creating a more resilient

industry.
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1.3.3 Human-Centric Pillar Focused on Well-being

As previously mentioned, the primary aspects of Industry 5.0 emphasize human
centricity, sustainability, and resilience. This section focuses specifically on the

human-centric approach.

While the human-centric approach began gaining prominence during Industry 4.0, as
exemplified by Romero et al. (2016) concept of “Operator 4.0,” which focuses on
integrating technologies to enhance worker satisfaction, creativity, and performance
through human cyber-physical systems, its scope has expanded in the context of
Industry 5.0. However, human-centric manufacturing is still a relatively new concept
that requires standardized definitions and frameworks for discussion (Alves, Lima, &
Gaspar, 2023); (Locatelli, et al., 2024).

In the context of Industry 5.0, the human-centric approach emphasizes enhancing
human well-being in industrial environments (Alves, Lima, & Gaspar, 2023). The topic
of well-being has been widely researched by psychologists, sociologists, public health
experts, and organizations such as the World Health Organization (WHO) and the
Centers for Disease Control and Prevention (CDC). The WHO states, "Health is a
complete physical, mental, and social well-being and not merely the absence of
disease or infirmity" (WHO, 2024) . Similarly, the CDC states that enhancing emotional
well-being positively affects mental and physical health. It also recognizes that part of
the benefits of emotional well-being can include being more resilient, and better
productivity and performance at the workplace (CDC, 2024).

Diener & Seligman (2004) studied a correlation between people with higher well-
being and their higher incomes, as well as better performance at work, finding positive
results. Furthermore, different studies have demonstrated that when companies
implement actions that benefit employees’ well-being, their productivity increases
(Christensen, dystein Saksvik, & Karanika-Murray, 2017); (Sagar, Garg, & V.
Basavaraddi, 2023); (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023);
(Sharpe & Mobasher Fard, 2022); (Henri DiMaria, Peroni, & Sarracino, 2020); (Isham,
Mair, & Jackson, 2021).
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Understanding and assessing well-being in work environments often rely on human
factors (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). In 2022, a model
was created to categorize human needs in the industrial environment into five levels,
ranging from basic safety to self-actualization (Lu, et al., 2022) (See Figure 4). The

sequence of levels illustrates the journey from basic safety to personal growth.

e Self fullfilment, leadership,
personal growth

evel 5: Self-
Actualization

e Achievement, respect, choice,
meaningful, importance

Level 4: Steem

e Appreciation,
Level 3: Belonging collaboration,
involvement, share, care

e Physical health,

Level 2: Health cognitive health,
psychological health

e Legal rights,
Level 1: Safety protection,
security

Figure 4. Industrial Human Needs Pyramid.

Adapted from: Lu, Y., Zheng, H., Chand, S., Xia, W., Liu, Z., Xu, X., Wang, L., Qin,
Z. & Bao, J. (2022). Outlook on human-centric manufacturing towards industry 5.0.
Journal of Manufacturing Systems,62,612-627.
https://doi.org/10.1016/j.jmsy.2022.02.001 CC BY 4.0

Level 1: Safety. At the foundation of the pyramid, worker’s physical safety and legal
rights are granted, ensuring compliance with labor and safety regulations (Lu, et al.,
2022). Traditionally, it has been managed by protocols that combine physical
separation between workers and machines with reactive measures that respond to

incidents only after they have occurred (Robla-Gomez, et al., 2017). However, the
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future of industrial safety is moving towards proactive protection (Casalino, Bazzi,
Zanchettin, & Rocco, 2019). This approach involves the creation of intelligent
environments capable of sensing and predicting worker's actions in real-time,

allowing for adaptive safety measures to prevent accidents proactively.

Level 2: Health. At this level, the focus shifts from immediate safety concerns to long-
term physical and mental well-being. This level identifies and addresses risks
associated with repetitive motions, improper posture, and work practices that may
lead to musculoskeletal injuries, as opposed to level 1, which is concerned primarily
with reducing immediate hazards (Lu, et al., 2022). To mitigate these risks, it is
imperative to implement ergonomic design principles that facilitate the creation of
static workstations, operational tools, and control interfaces, all aimed at minimizing
physical fatigue (Boulila, Ayadi, & Mrabet, 2017);(Caputo, Greco, Fera, & Macchiaroli,
2019). Moreover, psychological well-being is also prioritized at this level. The work
environment should promote worker engagement by offering meaningful tasks that

reduce cognitive overload (Lu, et al., 2022).

Level 3: Belonging. Humans are social by nature and need cooperation and
connection to flourish (Tomasello & Gonzalez-Cabrera, 2017). This level focuses on
the social aspects of the workplace, acknowledging the need for belonging:
“Belongingness refers to the emotional need for interpersonal relationships,
connection, and being part of a group. This includes needs such as friendship, trust,
acceptance, and appreciation” (Lu, et al., 2022). In a manufacturing context, this
involves ensuring active and trustworthy collaboration from workers in a human-
machine team and playing valuable roles in the overall success of the team grounded
in mutual empathy, communication, and shared responsibility for achieving common
goals (Lu, et al., 2022). Trust, intimacy, acceptance, and mutual appreciation are

essential components of this level.

Level 4: Esteem. On this level, confidence, strength, self-belief, personal and social
acceptance, and respect from others are key elements. To achieve self-actualization,
fulfilling these needs is critical. This transition represents shifting from being “willing
to work” to feeling “happy to work” (Lu, et al., 2022). Although esteem is an internal

need, humans are heavily influenced by external factors, such as social validation
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and approval. An effective way to reinforce an individual's sense of esteem is through
methods like gamification which includes rewards and recognition (Lu, et al., 2022).

Level 5: Self-Actualization. “Self-actualization is about reaching your full potential
and finding personal fulfillment and growth” (Lu, et al., 2022). At this level, workers
experience personal satisfaction in their jobs. They have a clear sense of purpose
and are able to embrace and accept themselves and others, fostering deep and
meaningful relationships in their daily work. In a manufacturing environment, a
personalized experience focusing on co-learning and co-exploration is offered,
allowing bi-directional learning coevolution between humans and machines (Lu, et
al., 2022).

As previously mentioned, it's crucial to first understand and identify human factors to
implement a human-centric approach. Even though identifying the most relevant
human factors in Industry 5.0 can be challenging, some authors have identified six
that are particularly relevant (Coronado, et al., 2022); (Lu, et al., 2022); (Crnjac Zizic,
Mladineo, Gjeldum, & Celent, 2022); (L Russ, et al., 2012). The six mentioned are
physical fatigue, attention, cognitive workload, stress, trust, and emotional
assessment. These were later categorized into Level 2, according to Loizaga et al.
(2023), based on the affected distinct states: physical, cognitive, and psychological,
as outlined in the Human Need Pyramid. Organizations need to be aware of these
human factors because they influence not only an individual’'s well-being but also
behavior and performance (Aquino, Jalagat, Kazi, & Nadeem, 2020).

In summary, understanding and addressing human factors is crucial to improving
well-being. By prioritizing these fundamental elements, organizations can create
environments that promote employee satisfaction and sustained productivity, leading
to meaningful and lasting outcomes. Human factors facilitate a Human-Centric

approach, bringing organizations closer to the new Industry 5.0.
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1.4 Objectives

1.4.1 General Objective

Apply a Competitive Technology Intelligence methodology to identify the trends of the
human-centricity pillar that characterize the Industry 5.0 paradigm and offer

recommendations for companies looking to adopt this human-centric approach with a

focus on the influence of workers’ well-being on productivity.

1.4.2 Specific Objective

e To employ scientometrics as part of the Competitive Technology Intelligence

process for identifying relevant trends.

o Offer recommendations to companies on how to become more human-centric

following this Industry 5.0 pillar.

1.5 Research Questions

In line with the objectives of the previous section, the following table outlines the

research questions and the corresponding chapter numbers where they are addressed

(See
Table 1).

Table 1. Research Questions.
(Own elaboration, 2024)

more human-centric, following the Industry 5.0 pillar?

Research question Chapter
What are the trends being discussed in the scientific literature
regarding the human centricity pilar of the Industry 5.0
. . . , ) 4
paradigm with a focus on the influence of workers’ well-being
on productivity?
What recommendations could companies adopt to become 5
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1.6 Scope and Limitations

Although Industry 5.0 is defined by three foundational pillars: human-centricity,
sustainability, and resilience, this thesis will focus exclusively on the examination of
the “human-centricity” pillar. The scope of the findings presented in this research
encompasses scientific papers published in Scopus from January 1, 2019, to October
1, 2024. A limitation of this research is that not all criteria of the PRISMA methodology
were comprehensively applied, which may have influenced the assessment of
potential bias.

1.7 Solution Overview

This document provides an overview of the current state of the influence of workers'
well-being on productivity within the context of Industry 5.0. The relevant research
and trends are obtained using the Competitive Technology Intelligence methodology.
Furthermore, the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) methodology is integrated into the Competitive Technology
Intelligence approach to ensure adherence to rigorous systematic review standards
and enhance the reliability of the findings.

26



Chapter 2: Competitive Technology Intelligence
Theoretical Framework

2.1 Introduction

This chapter presents and describes the chosen methodology for this research,
Competitive Technology Intelligence (CTl), and it briefly reviews each stage.

2.2 Competitive Technology Intelligence Methodology

Today, a wealth of information from various sources is available to enhance the
competitiveness and innovation of research and development (R&D) units. However,
having the right tools to turn this information into actionable intelligence is crucial. One
effective approach to meet this challenge is Competitive Technology. According to
Pellissier and Nenzhelele (2013), it is defined as “a process or practice that produces
and disseminates actionable intelligence by planning and ethically and legally
collecting, processing, and analyzing information from both the internal and external
competitive environment. This process helps decision-makers in their decision-making
and provides a competitive advantage to the enterprise.” In simpler terms, it is a tool
that ethically gathers information and transforms raw data into actionable results,
ultimately offering a competitive edge. Competitive intelligence can help facilitate new
or increased revenues, the development of new products or services, and savings in

both cost and time in organizations (Calof & Wright, 2008).

According to Rodriguez-Salvador and Castillo-Valdez (2021), Competitive
Technology Intelligence (CTI) refers to the application of competitive intelligence (Cl)
in scientific and technological research. Furthermore, CTI can be utilized to predict
new technologies, develop competitor analyses, forecast market changes, guide
innovation strategies, and support decision-making in R&D initiatives (Rodriguez-
Salvador & Castillo-Valdez, 2021).
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This thesis will apply the CTl methodology developed by Rodriguez-Salvador and
Castillo-Valdez (2021) to identify trends and emerging technologies in Industry 5.0.
This methodology stands out because it integrates primary and secondary
information, utilizes quantitative and qualitative metrics, and involves expert
engagement throughout the entire process. This methodology consists of eight
interdependent stages that provide and receive feedback from one another (See

v

Project Planning

Y

Identification of Data Sources

Y

Search Strategy Design

v

Data Collection

Y

Information Analysis

v

Feedback from Experts

v

Validation and Delivery of Final
Results

v

Decision Making

l

Figure 5).

OOLLOLOO

Figure 5. Competitive Technology Intelligence Methodology Cycle.
Adapted from: Rodriguez-Salvador, M., & Castillo-Valdez, P.F. (2021). Integrating
science and technology metrics. *JISIB*, 11(1), 69-77. CC BY 4.0. Available at
https://ojs.hh.se/index.php/JISIB/article/view/JISIB%20V0l%2011%20Nr%201%202
021
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2.2.1 Project Planning
This step establishes important elements, including the main activities, scope,
participants, roles, resources, and internal policies. In some cases, metrics may also

be established during this stage, depending on the research objectives.

2.2.2 Identification of Data Sources

Data constitutes the essential raw material for analysis, while the source denotes the
origin from which this data is obtained. Data sources are primarily categorized into
two types: primary sources, which come directly from experts in a specific field, and
secondary sources, which include scientific papers, technical documents, industry
reports, and market research (Rodriguez-Salvador & Castillo-Valdez, 2021).

Additionally, establishing metrics can facilitate the selection of the best data sources.

2.2.3 Search Strategy Design

In this stage, a clear search strategy is created to find the information within the data
sources identified in the previous step. When working with primary sources involving
experts, selecting the appropriate tools for gathering insights is essential. Consider
using methods such as Delphi studies, focus groups, and interviews. For secondary
sources, especially those obtained from databases, designing a search query that
includes the most relevant terms is crucial. These terms can be found in a thorough
literature review (Rodriguez-Salvador & Castillo-Valdez, 2021). Additionally, different
query designs are recommended to ensure the collection of the most relevant and
reliable data.

2.2.4 Data Collection
This stage involves collecting and organizing all essential information for research
using primary and secondary data sources. Additionally, the data is analyzed to

ensure consistency and the right format, a process known as "normalization”.

29



2.2.5 Information Analysis

Unlike traditional studies, which emphasize primarily the “what” and “how”, this
methodology seeks to explore further questions (Rodriguez-Salvador & Castillo-
Valdez, 2021), including the five Ws. According to Hart (1996), the five Ws are: “what”,

‘who”, “where”; “when” and “why”. The author notes that this method may act as a
tool to ensure that the retrieved information aligns with the research needs.

Each data source is assessed differently using its corresponding metrics. For
example, scientific literature can be evaluated based on publication counts, growth
rates, impact factors, citations, and collaboration networks. Relevant metrics for
patents include patent production, classification, inventor distribution, and legal
status. Social media and websites are gauged through the number of mentions,

downloads, and user interactions.

2.2.6 Feedback from Experts

Unlike in other studies, where expert input might be limited or absent, in CTI,
researchers contact experts throughout the process. The methodology suggests
involving experts through interviews and questionnaires in the entire CTI process. In
addition to interviews, experts may participate in methods like Delphi studies and

focus groups.

2.2.7 Validation and Delivery of Final Results

At this stage of the process, a final check will ensure the accuracy of the data,
although validation should occur at every stage. Final adjustments may also be made
at this point. After this, the validated data will be used to create a report for project
decision-makers and stakeholders. It is recommended that the report includes both
quantitative and qualitative results, taking into account the project's preferences and
needs.
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2.2.8 Decision Making

In this phase, the results will be implemented based on the information gathered and
analyzed in the R&D area. After evaluating and discussing potential outcomes, action
can be taken. Additionally, it will be essential to define what will be continuously
monitored, which is a key aspect of this methodology. This stage promotes
discussion, which is vital for stimulating conversation and facilitating debates about
these decisions, helping to identify ways to gain competitive advantage.

Chapter 3: Competitive Technology Intelligence Execution

3.1 Introduction

The upcoming chapter will implement the Competitive Technology Intelligence (CTI)
methodology proposed by Rodriguez-Salvador & Castillo-Valdez (2021). This is done
step by step, focusing on how well-being influences productivity in the context of
Industry 5.0. This methodology was previously detailed in Chapter 2 and is the
foundation of this research. Additionally, scientometrics is utilized as a key component
of the CTI approach to enhance precision and depth. The Preferred Reporting ltems
for Systematic Reviews and Meta-Analyses (PRISMA) methodology is a valuable tool
to ensure systematic validation and comprehensive data analysis, resulting in a
transparent, complete, and accurate literature review (Page, et al., 2021). Therefore,
PRISMA was utilized for scientometric analysis as part of the CTl methodology (See
Table 2).

While the original specifications of the CTl methodology, as proposed by Rodriguez-
Salvador & Castillo-Valdez (2021), do not explicitly reference the use of PRISMA, this
research aspires to adhere to stringent systematic review standards and enhance the
reliability of its findings.

31



Table 2. PRISMA integration on Competitive Technology Intelligence.
(Own elaboration, 2024)
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3.2 Project Planning

The research topic has been clearly defined and focused. The general and specific
objectives and research questions that this thesis aims to address have been

established. Additionally, the scope of the study has been clarified.

While Chapter 1 covers this stage of the methodology, a review will be provided to
clarify and enhance understanding of its components. The research topic centers on
the influence of workers’ well-being on productivity in the context of Industry 5.0. In
general, this research aims to find trends related to the human-centric pillar of
Industry 5.0 and provide recommendations for companies seeking to adopt this

approach.

Furthermore, the research has two specific objectives: first, to employ scientometrics
as part of the Competitive Technology Intelligence process to identify relevant trends,
and second, to offer recommendations to companies interested in becoming more

human-centric in accordance with the principle of Industry 5.0.

This research aims to answer the following questions:
Q1: What are the trends being discussed in the scientific literature regarding the
human centricity pilar of the Industry 5.0 paradigm with a focus on the influence of

workers’ well-being on productivity?

Q2: What recommendations could companies adopt to become more human-centric,

following the Industry 5.0 pillar?

Ultimately, Industry 5.0 is characterized by three pillars: human-centricity,
sustainability, and resilience. This thesis specifically focuses on human-centricity,
which defines the scope of this research. The findings are limited to scientific papers
published in the Scopus database from 01/01/2019 to 01/10/2024.
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3.3 Identification of Data Sources

This research incorporates insights from Industry 4.0 and Industry 5.0 experts as
primary sources and scientific literature as secondary sources, in accordance with
the CTIl methodology, which advocates for using both sources. Experts in the field of
Competitive Technology Intelligence also participated.

A specific timeframe was defined between 01/01/2019 and 01/10/2024 due to the
“Industry 5.0” official creation in 2019 by The European Commission (Breque, De Nul,
& Petridis, 2021). The scientific literature was retrieved from Scopus at the
recommendation of the CTI expert due to its high reliability and analytical capacity.
Scopus indexes 24.6+ million open-access journals and covers a wide range of
disciplines: science, technology, medicine, social sciences, and arts and humanities
(Elsevier, 2024). Moreover, in a comparison of the databases Google Scholar, Web
of Science, and Scopus, Scopus demonstrated the highest percentage of papers and
citations (Harzing & Alakangas, 2016). The database access was granted by
Biblioteca TEC 21 of Tecnologico de Monterrey.

3.4 Search Strategy Design

3.4.1 Primary Source Search Strategy Design

In accordance with the CTl methodology proposed by Rodriguez-Salvador & Castillo-
Valdez (2021), the collection of insights from experts is a fundamental aspect of the
process. Moreover, it is important to thoughtfully select the appropriate tools for

gathering this information based on the specific research objectives.

One key objective of this research is to offer recommendations for organizations
seeking to embrace a human-centric approach that emphasizes the influence of
workers’ well-being on productivity. To support this offering, it's essential to gather
insights from experts regarding the information presented in this research. This will
help assess the relevance of the results and identify potential interests for
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organizations that need to make decisions in the context of Industry 5.0, with an

emphasis on the influence of workers’ well-being on productivity.

According to Masadeh (2012), a focus group is a qualitative research methodology
that involves a structured discussion with a small group of individuals. One person or
a team of moderators facilitates this discussion, which aims to generate qualitative
data on a specific topic of interest. The author further emphasizes that focus groups
are an effective and efficient method for data collection, particularly when involving a

small group of participants, typically four to twelve individuals.

Due to the novelty of the term Industry 5.0 in research and the limited number of
experts in the field, a focus group is considered the most appropriate tool for this
study. This thesis proposes conducting a focus group with five Industry 5.0 experts
and using a questionnaire (See Table 3) to ensure the relevance of the results, which

will serve as the foundation for the recommendations offered.

Table 3. Focus Group Questions with Experts.
(Own elaboration, 2024)

Participant Question

Is the information presented easy
to understand?
Is the information presented sufficient for
decision-making?
1 Is the information presented useful for
decision-making?
Is there any additional information that
would you find needed for decision-
making?
Is the information presented easy to
understand?
Is the information presented sufficient
for decision-making?
Is the information presented useful for
decision-making?
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Is there any additional information that
would you find needed for decision-
making?

Is the information presented easy to
understand?

Is the information presented sufficient
for decision-making?

Is the information presented useful for
decision-making?

Is there any additional information that
would you find needed for decision-
making?

Is the information presented easy to
understand?

Is the information presented sufficient
for decision-making?

Is the information presented useful for
decision-making?

Is there any additional information that
would you find needed for decision-
making?

Is the information presented easy to
understand?

Is the information presented sufficient
for decision-making?

Is the information presented useful for
decision-making?

Is there any additional information that
would you find needed for decision-
making?

3.4.2 Secondary Source Search Strategy Design

The CTI methodology proposed by Rodriguez-Salvador & Castillo-Valdez (2021)
recommends identifying keywords through a literature review. The PRISMA
methodology advocates using the PICO framework. However, both frameworks have
limitations. For example, keyword selection through a literature review relies heavily

on databases, while PICO relies heavily on the discretion of the research expertise

(Leem, Shin, Kim, & Ryul Shim, 2024).
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To fill this gap, this research proposes to develop a search strategy through a literature
review in order to establish a solid basis for the PICO framework. This enhances the
robustness of the secondary source search strategy and improves the reliability of the
search results.

3.4.2.1 Keyword Selection through Literature Review

During this phase, a search strategy was developed to find the most relevant
information. This strategy involved identifying the most suitable terms, which were
determined through a preliminary literature review in the Scopus database. The
decision to include or exclude a keyword was made through an iterative process. Due
to the European Commission's official mention of “Industry 5.0” in 2019, a specific
timeframe was defined between 01/01/2019 and 01/10/2024 (Breque, De Nul, &
Petridis, 2021).

The keywords were divided into three core categories (See Table 4).
- Industry 5.0 terms
- well-being terms

- productivity terms

These core categories were considered as keywords to search on Scopus, focusing
on literature published between 01/01/2019 and 10/01/2024. For each category, 20
papers were selected from the Scopus database, 10 representing high-impact
publications and 10 representing the most recent publications within the past five
years. The 'Sort by' function in Scopus was used, with 'Relevance' for high-impact
publications and 'Date (newest)' for the most recent ones. The objective was to
ensure the inclusion of the latest and most relevant terminology. The review
considered important sections of each paper, including the title, keywords, and
abstracts. This approach revealed variations of the terminology and commonly used

synonyms.
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The following table presents the core categories and their number of results in Scopus
from 01/01/2019 to 01/10/2024, followed by the word variations identified in the
previously explained literature review strategy.

Table 4. Analysis of the Core Terms "Industry 5.0", "well-being", and "productivity".
(Own elaboration, 2024)

Numbers of results corresponding between
01/01/2019 — 01/10/2024

Core Keyword Scopus

TITLE-ABS-KEY ( "Industry 5.0" ) AND PUBYEAR >
2018 AND PUBYEAR < 2025

2,401

TITLE-ABS-KEY ( "Fifth Revolution" ) AND PUBYEAR
> 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial Revolution" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

230

Industry 5.0
TITLE-ABS-KEY ("I5.0 ") AND PUBYEAR > 2018

AND PUBYEAR < 2025

119

TITLE-ABS-KEY ( "human-centric manufacturing" )
AND PUBYEAR > 2018 AND PUBYEAR < 2025

76

TITLE-ABS-KEY ( "IR 5.0" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

21

TITLE-ABS-KEY ( "well ? being" OR "wellbeing" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

210,249

TITLE-ABS-KEY ( "welfare*" OR "well?fare*" ) AND

93,321
PUBYEAR > 2018 AND PUBYEAR < 2025

Well-being

TITLE-ABS-KEY ( "human ? factor*" ) AND PUBYEAR
> 2018 AND PUBYEAR < 2025

16,634

TITLE-ABS-KEY ( "Health" ) AND PUBYEAR > 2018

2,263,376
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "productiv*" ) AND PUBYEAR >
productivity 271,128
2018 AND PUBYEAR < 2025
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TITLE-ABS-KEY ( "Efficien*" OR "Effectiv*") AND

5,136,909
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Performance" ) AND PUBYEAR >
2018 AND PUBYEAR < 2025

3,253,593

The next phase of the search strategy involved conducting a comparative analysis
between “Industry 5.0 and “well-being.” Combining the keywords from Table 4.
Analysis of the Core Terms, an analysis was carried out to explore the relationship
between “Industry 5.0” and “well-being” (See Table 5). This step aimed to ensure that
the selected literature sufficiently represented the intersection of both topics.

Table 5. Combination of "Industry 5.0" & "well-being" terms.
(Own elaboration, 2024)

Numbers of results corresponding between
01/01/2019 — 01/10/2024

Keyword Result Scopus
TITLE-ABS-KEY ( "Industry 5.0" AND (
"well ? being" OR "wellbeing" ) ) AND 186

PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND (
"welfare™ OR "well?fare™ ) ) AND 24
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND (
"human ? factor*" ) ) AND PUBYEAR > 122
2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND

"health" ) AND PUBYEAR > 2018 AND 157
PUBYEAR < 2025
TITLE-ABS-KEY ( "Fifth Revolution" AND (
"well ? being" OR "wellbeing" ) ) AND 0

PUBYEAR > 2018 AND PUBYEAR < 2025
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TITLE-ABS-KEY ( "Fifth Revolution" AND (
"welfare™ OR "well?fare™ ) ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Revolution" AND (
"human ? factor*" ) ) AND PUBYEAR >
2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Revolution" AND
"health" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "well ? being" OR
"wellbeing" ) ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

14

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "welfare*" OR
"well?fare*™ ) ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "human ? factor™ ) )
AND PUBYEAR > 2018 AND PUBYEAR <
2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND "health" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

14

TITLE-ABS-KEY ( "15.0" AND ( "well ?
being" OR "wellbeing" ) ) AND PUBYEAR
> 2018 AND PUBYEAR < 2025

14

TITLE-ABS-KEY ( "15.0" AND ( "welfare™"
OR "well?fare*™ ) ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "human ?
factor® ) ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025
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TITLE-ABS-KEY ( "15.0" AND "health" )
AND PUBYEAR > 2018 AND PUBYEAR < 9
2025

TITLE-ABS-KEY ( "Human-centric
manufacturing" AND ( "well ? being" OR
"wellbeing" ) ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

18

TITLE-ABS-KEY ( "Human-centric
manufacturing" AND ( "welfare*™ OR
"well?fare™ ) ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
manufacturing" AND ( "human ? factor*" ) )
AND PUBYEAR > 2018 AND PUBYEAR <

2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND "health" ) AND 8
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ("IR 5.0" AND ( "well ?
being" OR "wellbeing" ) ) AND PUBYEAR 0
> 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "IR 5.0" AND (
"welfare™ OR "well?fare™ ) ) AND 0
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "IR 5.0" AND ( "human

? factor*" ) ) AND PUBYEAR > 2018 AND 0
PUBYEAR < 2025
TITLE-ABS-KEY ( "IR 5.0" AND "health" )
AND PUBYEAR > 2018 AND PUBYEAR < 1
2025

To examine the keyword’s relevance to this study's objective, a more detailed

evaluation was undertaken when the combinations between “Industry 5.0” and “well-
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being” and their synonyms had at most five papers (See Table 5). This involved a
thorough review of the abstract, introduction, and discussion sections.

From the four combinations with the keyword “IR 5.0” only one resulted in a single
paper. Upon analysis, it became clear that this paper did not contribute to the
objectives of this research. Among the four combinations with the keyword “Fifth
Revolution,” only one resulted in three papers. However, these papers did not

significantly contribute to the research and were subsequently excluded.

As a result, the keywords “Fifth Revolution” and “IR 5.0” were excluded, as their
associated papers did not contribute significantly to the research or show any results
(See Table 6).

Table 6. Reasoning for Exclusion of Terms.
(Own elaboration, 2024)

Combination Reference Reasoning
Sultan, S., Acharya, Y., Zayed,
0., Elzomour, H., Parodi, J. C.,
Soliman, O., & Hynes, N. (2022).
Is the cardiovascular specialist
. . The paper focuses on
TITLE-ABS-KEY ( "Fifth | ready for the fifth revolution? The _ )
how technologies will
Revolution" AND role of artificial intelligence, _
shape cardiovascular
"health" ) AND machine learning, big data _ o
medicine, which is not
PUBYEAR > 2018 AND analysis, intelligent swarming, _ _
the topic of this
PUBYEAR < 2025 and knowledge-centered service
research.
on the future of global
cardiovascular healthcare
delivery. Journal of Endovascular
Therapy, 30(6), 877-884.
Shubhangi, C., Ankit, T., Qasim, It focuses on Industry
M., R.S, W., & Prince, S. (2023). 5.0 for medical
A Critical Review on Industry 5.0 applications, which is
and Its Medical Applications. 2nd not the topic of this
International Conference on research.
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Industrial and Manufacturing
Systems, CIMS 2021. 251-261.

Montgomery, D. (2020). Soil
health and the revolutionary
potential of Conservation
Agriculture. Rethinking Food and
Agriculture: New Ways Forward.
Pages 219 - 229

It focuses on the health
of the soil, which is not
the topic of this

research.

TITLE-ABS-KEY ( "IR
5.0" AND "health" )
AND PUBYEAR > 2018
AND PUBYEAR < 2025

Chen, Y., Chen, Y.-q., & Zhang,
Q. (2022). Association between
vitamin D and insulin resistance
in adults with latent tuberculosis
infection: Results from the
National Health and Nutrition
Examination Survey (NHANES)
2011-2012. Journal of Infection
and Public Health, 15(8), 930—
935.

In this paper IR referes
to insuline resistance,
which is not the topic of

this research.

Therefore, the preliminary search query kept only the keywords that significantly
contributed to the focus of workers' well-being in the context of Industry 5.0 (See

Table 7).

Table 7. Preliminary Search Query.

(Own elaboration, 2024)

Query

Result

TITLE-ABS-KEY ( ( "Industry 5.0" OR "Fifth Industrial Revolution"
OR "15.0" OR "Human-centric manufacturing” ) AND ( ( "well ?
being" OR "wellbeing" ) OR ( "welfare*" OR "well?fare*" ) OR ( 430

"human ? factor*" ) OR ( "health" ) ) ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

The final step of the search strategy involved performing a comparative analysis
combining the keywords from Table 4. In this case, the keywords related to
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"productivity" were added along with the "Industry 5.0" and "well-being" previous
combinations shown in Table 5. The combinations with “Industry 5.0”, “well-being”
and “productivity” are presented in Table 8. This step aimed to ensure that the
selected literature sufficiently represented the intersection of well-being and

productivity in the context of Industry 5.0.

Table 8. Combination of "Industry 5.0", "well-being" & "productivity" terms.
(Own elaboration, 2024)

Numbers of results corresponding between
01/01/2019 — 01/10/2024

Keyword Result Scopus

TITLE-ABS-KEY ( "Industry 5.0" AND (
"well ? being" OR "wellbeing" ) AND
"productiv*" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

43

TITLE-ABS-KEY ( "Industry 5.0" AND (
"welfare™ OR "well?fare™ ) AND
"productiv*" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND (
"human ? factor*" ) AND "productiv*" )
AND PUBYEAR > 2018 AND PUBYEAR <
2025

25

TITLE-ABS-KEY ( "Industry 5.0" AND (
"health" ) AND "productiv*" ) AND 22
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND (
"well ? being" OR "wellbeing" ) AND
"efficiency" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

44

TITLE-ABS-KEY ( "Industry 5.0" AND (
"welfare™ OR "well?fare™ ) AND
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"efficiency” ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND (
"human ? factor*" ) AND "efficiency" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

24

TITLE-ABS-KEY ( "Industry 5.0" AND (
"health" ) AND "efficiency" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

31

TITLE-ABS-KEY ( "Industry 5.0" AND (
"well ? being" OR "wellbeing" ) AND
"performance" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

52

TITLE-ABS-KEY ( "Industry 5.0" AND (
"welfare™ OR "well?fare™ ) AND
"performance" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND (

el

"human ? factor*" ) AND "performance" )
AND PUBYEAR > 2018 AND PUBYEAR <

2025

42

TITLE-ABS-KEY ( "Industry 5.0" AND (
"health*" ) AND "performance" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

34

TITLE-ABS-KEY ( "Industry 5.0" AND (
"well ? being" OR "wellbeing" ) AND
"Effectiv*" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

24

TITLE-ABS-KEY ( "Industry 5.0" AND (
"welfare™ OR "well?fare™ ) AND
"Effectiv*" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Industry 5.0" AND (
"human ? factor*" ) AND "Effectiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

15
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TITLE-ABS-KEY ( "Industry 5.0" AND (
"health™ ) AND "Effectiv" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

42

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "well ? being" OR
"wellbeing" ) AND "productiv*" ) AND

PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "welfare*" OR
"well?fare™ ) AND "productiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "human ? factor™ )
AND "productiv*" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "health" ) AND
"productiv*" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "well ? being" OR
"wellbeing" ) AND "efficiency" ) AND

PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "welfare*" OR
"well?fare*" ) AND "efficiency" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "human ? factor™ )
AND "efficiency" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "health" ) AND
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"efficiency” ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "well ? being" OR
"wellbeing" ) AND "performance" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "welfare*" OR
"well?fare™ ) AND "performance" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "human ? factor™ )
AND "performance" ) AND PUBYEAR >
2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "health" ) AND
"performance" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "well ? being" OR
"wellbeing" ) AND "Effectiv*" ) AND

PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "welfare*" OR
"well?fare™ ) AND "Effectiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "human ? factor™ )
AND "Effectiv*" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Fifth Industrial
Revolution" AND ( "human ? factor™ )
AND "Health" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025
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TITLE-ABS-KEY ( "15.0" AND ( "well ?
being" OR "wellbeing" ) AND "productiv*" )
AND PUBYEAR > 2018 AND PUBYEAR <

2025

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*"
OR "well?fare*" ) AND "productiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "human ?
factor™ ) AND "productiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "health" )
AND "productiv*" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "well ?
being" OR "wellbeing" ) AND "efficiency" )
AND PUBYEAR > 2018 AND PUBYEAR <

2025

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*"
OR "well?fare*" ) AND "efficiency" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "human ?
factor™ ) AND "efficiency" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "health" )
AND "efficiency" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "well ?
being" OR "wellbeing" ) AND
"Performance" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*"
OR "well?fare*" ) AND "Performance" )
AND PUBYEAR > 2018 AND PUBYEAR <
2025
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TITLE-ABS-KEY ( "15.0" AND ( "human ?
factor™ ) AND "Performance" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "health")
AND "Performance" ) AND PUBYEAR >
2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "well ?
being" OR "wellbeing" ) AND "Effectiv*" )
AND PUBYEAR > 2018 AND PUBYEAR <
2025

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*"
OR "well?fare*" ) AND "Effectiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "15.0" AND ( "human ?
factor* ) AND "Effectiv*" ) AND PUBYEAR
&GT; 2018 AND PUBYEAR &LT; 2025

TITLE-ABS-KEY ( "15.0" AND ( "health" )
AND "Effectiv*" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing” AND ( "well ? being" OR
"wellbeing" ) AND "productiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "welfare*™ OR
"well?fare* ) AND "productiv*" ) AND

PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "human ? factor*" )
AND "productiv*" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "health" ) AND
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"productiv*" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "well ? being" OR
"wellbeing" ) AND "efficiency" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "welfare*™ OR
"well?fare*" ) AND "efficiency" ) AND

PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "human ? factor*" )
AND "efficiency" ) AND PUBYEAR > 2018

AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "health" ) AND
"efficiency" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "well ? being" OR
"wellbeing" ) AND "Performance" ) AND

PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "welfare*™ OR
"well?fare™ ) AND "Performance" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "human ? factor*" )
AND "Performance" ) AND PUBYEAR >

2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "health" ) AND
"Performance" ) AND PUBYEAR > 2018
AND PUBYEAR < 2025
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TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "well ? being" OR
"wellbeing" ) AND "Effectiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric

Manufacturing" AND ( "welfare™ OR

"well?fare™ ) AND "Effectiv*" ) AND
PUBYEAR > 2018 AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "human ? factor*" )
AND "Effectiv*" ) AND PUBYEAR > 2018

AND PUBYEAR < 2025

TITLE-ABS-KEY ( "Human-Centric
Manufacturing" AND ( "health" ) AND
"Effectiv*" ) AND PUBYEAR > 2018 AND
PUBYEAR < 2025

To examine the keyword’s relevance for the objective of this study, a more detailed
evaluation was undertaken when the combinations between “Industry 5.0”, “well-
being”, and “productivity” and their synonyms had at most five papers. This involved
thoroughly reviewing the abstract, introduction, and discussion sections. As a result

of this evaluation, no changes were made to the keywords.

3.4.2.2 Keyword Selection with PEO Framework

The PICO framework, which stands for Population, Intervention, Comparison, and
Outcome, is well-known for its effectiveness in framing and answering clinical and
healthcare questions (Palaskar, 2017). Additionally, it can be used to develop
literature search strategies by breaking down search terms or concepts into PICO
elements (Palaskar, 2017). However, there are some cases where the PICO
framework cannot be directly applied due to the research scope and design (Topor,
et al., 2021).
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Several alternatives to the traditional PICO framework have been developed to
address its limitations (Booth, et al., 2019). Some examples include SPICE-Setting,
SPIDER—Sample,
Phenomenon of Interest, Design, Evaluation, and Research type— (Stern, Jordan, &

Perspective, Intervention, Comparison, and Evaluation—,
McArthur, 2014), and PEO—Population, Exposure, Outcome— (Aboagye, et al.,

2021).

Unlike the PICO framework, which focuses on comparing interventions and their
outcomes, the PEO framework explores experiences and outcomes related to
exposure. Since worker well-being is closely related to their experiences and
perceptions, and productivity is viewed as the outcome of these experiences, the
PEO framework is a more suitable choice. The keywords in the PEO framework are
derived from the prior section, where they were chosen based on a literature review
(See Table 9).

Table 9. Keyword Selection via the PEO Framework.
(Own elaboration, 2024)

PEO Domain: Human-Centricity focused
Element on well-being and productivity
within the Industry 5.0 Paradigm
Search
Keywords Strategies
"Industry 5.0" OR
Manufacturing "Fifth Industrial
. environments Revolution" OR
Population aiming to adopt | "15.0" OR "Human-
Industry 5.0 centric
manufacturing”
( "well ? being" OR
"wellbeing" ) OR (
Human Factors | "welfare*" OR
Exposure focused on well- | "well?fare*" ) OR (
being "human ? factor*" )
OR ( "health")
Improvements in ,,Eaf;ﬂgggc,t,iv*" 85
Outcome worker  well-being "perform;lnce" OR
and productivity "Effectiv*" )

3.4.2.3 Query Construction and Execution
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After the keyword selection process, a query with results focusing on Industry 5.0,
well-being, and productivity is produced. The results were limited to the dates
between 01/01/2019 and 01/10/2024. The following table presents the final query and
its results (See Table 10).

Table 10. Final Query.
(Own elaboration, 2024)

Query Result

TITLE-ABS-KEY ( ( "Industry 5.0" OR "Fifth Industrial Revolution"
OR "15.0" OR "Human-centric manufacturing” ) AND ( ( "well ?
being" OR "wellbeing" ) OR ( "welfare™ OR "well?fare*" ) OR (

"human ? factor*" ) OR ( "health" ) ) AND ( "productiv*" OR

"efficiency" OR "performance" OR "Effectiv*" ) ) AND PUBYEAR >

2018 AND PUBYEAR < 2025

223

3.5 Data Collection

The previous validated query produced 223 results in Scopus, as shown in the last
section (See Table 10). These results include journals, books, and conference papers
published between 01/01/2019 and 1/10/2024. No duplicate findings were eliminated
since only one database was used. The remaining publications were screened based
on their titles, keywords, and abstract information. The inclusion criteria required
publications to be all in the English language, publications to be consistent with the
research topic of workers’ well-being and productivity within the context of Industry
5.0, and the publication stage must be final in the Scopus function of the “Publication
stage.” Commonly, a publication labeled as “Final” ensures that the article has gone
through the entire peer-review process and has been formally accepted (PLOS,
2024).

Moreover, exclusion criteria encompassed publications on well-being and productivity

that are not aligned with the Industry 5.0 paradigm, publications primarily pertaining

to the healthcare sector, and publications focused mainly on the sustainability or
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resilience pillars of Industry 5.0. As a result, the number of papers decreased to 149
(See Figure 6).

C
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°
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© Total Included
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Figure 6. Flow Diagram based on PRISMA Methodology.
(Own elaboration, 2024)

3.6 Information Analysis

An information analysis will be undertaken using the five Ws framework previously
introduced in subchapter 2.2.5, Chapter 2. The main aim is to ensure that the
information obtained aligns with the research objectives while also uncovering insights
that may not be clearly visible in the raw data. The application of the five Ws in this
research is as follows: When—to analyze temporal patterns; Where—to identify the

geographical distribution of research effort in the field; Who—to determine the key
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contributors and stakeholders; What—to identify the most frequently mentioned
keywords and types of publications obtained; and Why—to identify the most relevant
human factors and trends in Industry 5.0. By applying this framework, the goal is to

achieve a detailed and comprehensive understanding of the data at hand.

3.6.1 When

The publication years are critical for comprehending the evolution of research interest
over time. The subsequent chart illustrates the annual publication production through
the years (See Figure 7). The chart encompasses only complete years. Given that
data collection for this research concluded in October 2024, the year 2024 has been

omitted to avoid potentially misleading results.
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Figure 7. Number of Publications per Year.
(Own elaboration, 2024)

As observed, there is a consistent increase from 2019 to 2021, indicating an
exploratory phase in this field, while the sharp rise from 2022 to 2023 implies
accelerated research engagement. This corresponds with the period when the
European Commission officially introduced Industry 5.0 in 2019. Furthermore, this

notable increase may indicate a transition from exploring concepts to actively
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adopting and implementing the principles of Industry 5.0. Decision-makers can view
this as a sign of growing opportunities for collaboration, funding, and innovation in
this rapidly expanding sector.

3.6.2 Where

Subsequently, the publications were organized according to the first author's country
of affiliation in order to identify the geographical distribution of research efforts within
the field. The chart below displays the publications by the country of the first author
(See Figure 8).
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Figure 8. Number of Publications by Country.
(Own elaboration, 2024)

As a result, the ten leading countries with publications related to the relationship
between well-being and productivity in the Industry 5.0 field are Italy (52), Germany
(11), France (11), Spain (11), Sweden (10), China (10), the United States (9), India
(7), the United Kingdom (6), and Portugal (6).

This chart shows Italy's dominance as the primary contributor of papers in the field,
accounting for 35%. This underlines its significant role in advancing research on the
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influence of workers’ well-being on productivity within Industry 5.0. This finding is
consistent with Italy's pioneering role in the implementation of Industry 5.0 initiatives.
For instance, the project “Piano Transizione Industry 5.0," which was launched in
March 2022 (Ministero delle Imprese e del Made in Italy, 2022). Furthermore, another
significant factor that may have served as a catalyst for Italy to lead Industry 5.0
focused on the influence of workers’ well-being on productivity, is that it was the first
European country to be impacted by COVID-19 in January 2020 (Masino & Enria,
2023).

Furthermore, Germany, France, and Spain each account for 7%, establishing a
significant secondary group of contributors. This underscores European leadership in
the domain, as seven of the top ten countries are situated in Europe. Additionally,
these countries demonstrate a substantial level of industrial development, thereby
presenting considerable potential for research and innovation.

In Asia, China and India emerge as notable contributors, while the United States
leads in the Americas. This regional distribution underscores the potential for global
collaboration regarding workers' well-being and its influence on productivity within the
context of Industry 5.0.

3.6.3 Who

The primary authors will be identified to highlight the key contributors in Figure 9, and
the funding sponsors will be identified to highlight key stakeholders in Figure 10. The
following chart presents the primary contributors (See Figure 9).
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Gamberini, L. NI
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Granata, I.

Faccio, M.

(=}
=

2 3 4

vl
(o)}
~

® Documents by Authors

Figure 9. Publications by Author.
(Own elaboration, 2024)

The bar chart indicates that Faccio, M. and Granata, |. are the most active contributors
to research on the influence of workers’ well-being on productivity in the context of
Industry 5.0. Organizations and researchers looking to deepen their understanding
or establish collaborations in this area should consider engaging with these key
contributors to enhance their expertise and insights. Moreover, the consistent
contributions from authors like Peruzzini, M., Chand, S., and Grandi, F. showcase a
strong secondary tier of expertise, highlighting a robust network of researchers in the
field. Furthermore, these findings can help decision-makers identify leaders and
potential collaborators in innovation projects.

Additionally, the following treemap displays the ten main funding sponsors (See
Figure 10).
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National Natural
Science Foundation | Politecnico di
of China (5) Torino (4)
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Development
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Science and
Ministero dell'lstruzione, Technology of
dell'Universita e della the People's
European Commission (21) Ricerca (6) Republic of...

Figure 10. Number of Publications by Funding Sponsor.
(Own elaboration, 2024)

Evidently, the European Commission plays a dominant role in funding research
related to the influence of workers’ well-being on productivity in Industry 5.0 (See
Figure 10). Notably, it contributes to 59% of the publications through initiatives such
as the Horizon 2020 Framework Programme (Commission, Horizon 2020, 2020) and
the European Regional Development Fund (Commission, European Regional
Development Fund, 2024). This significant funding dominance can be attributed to
the European Commission’s leadership in defining the concept of Industry 5.0.
Additionally, this substantial European funding is closely connected to the
prominence of European countries in well-being and productivity within the context of
Industry 5.0.

3.6.4 What

Figure 11 highlights key topics in this research field and frequently mentioned
keywords. Meanwhile, Figure 12 presents an overview of the various types of
publications and categorizes them accordingly.
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A word cloud (see Figure 11) illustrates the most commonly referenced topics. This
word cloud was created using keywords extracted from the 149 analyzed papers. It
was created using an online tool called “wordcloud.com” (Schoonhoven, 2003), and

it highlights the most prominent topics in the research field.
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Figure 11. Word Cloud Distribution.
(Own elaboration, 2024)

Keywords like ‘Industry 5.0’ and ‘human factors’ are crucial elements of the discourse,
emphasizing their importance in shaping the focus of current studies. These insights
also enabled the validation of the alignment between the research objectives and the

information gathered.

Furthermore, the presence of keywords such as ‘human-robot collaboration’, ‘virtual
reality, and ‘augmented reality’ in the cloud highlights a significant interest in
technology-driven approaches to enhancing well-being within the context of Industry
5.0. The word cloud provides valuable insights by emphasizing key research priorities
and emerging technologies. For instance, the prominence of terms like ‘cobots,’
‘digital twin,” and ‘ergonomics’ underscores areas where resources can be allocated
to promote innovation and collaboration, especially concerning the influence of
workers’ well-being on productivity in Industry 5.0. Additionally, it identifies potential
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gaps in topics that receive less focus, encouraging further examination of these
lesser-emphasized areas.

Furthermore, the doughnut chart provides an insightful overview of the publications
organized by type. (See Figure 12).

B Article ®Conference Paper Book Chapter

Figure 12. Publication Type Distribution.
(Own elaboration, 2024)

The doughnut chart offers a clear overview of the distribution of document types in
the analyzed research papers. Research articles dominate the landscape, accounting
for 53% of the total, emphasizing the academic field's strong reliance on peer-
reviewed articles for credible information. Conference papers closely follow at 40%,
reflecting the crucial role that conferences play in sharing the latest trends and
fostering discussions in the field. Finally, book chapters contribute a modest 7% to
the overall mix. The substantial presence of articles highlights the importance of
engaging with peer-reviewed literature for reliable insights, while the high percentage
of conference papers indicates the need to attend conferences to stay informed and
make valuable connections.
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3.6.5 Why

Figure 13 illustrates the most relevant human factors in Industry 5.0, and Figure 14
highlights the latest technological trends. The following pie chart categorizes these key

human factors.

‘

34

m Physical Fatigue = Attention Cognitive Workload

m Stress ® Trust Emotional Assessment

Figure 13. Human Factors.
(Own elaboration, 2024)

The chart highlights the distribution of six key human factors in Industry 5.0. Notably,
‘Physical Fatigue’ and ‘Cognitive Workload’ stand out as the most significant, with 39
and 34 publications in these areas, respectively. These two factors account for half of
the total publications, underscoring their prominence in the field. This suggests that
physical strain and mental load are critical challenges impacting worker well-being and
productivity, making them key priorities for intervention.

Furthermore, ‘Trust' also stands out as a crucial element, highlighted by 30
publications in this area. This underscores the goals of Industry 5.0, which focuses on
fostering closer collaboration between humans and robots. It's essential to understand
that Industry 5.0 aims to cultivate a human-centric environment where robots are not

merely tools but rather collaborative partners that enhance human potential.
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Lastly, even though ‘Attention’ and ‘Stress’ make up a smaller portion of the pie chart,
it's crucial not to underestimate them, as they may be underlying issues that affect
other factors.

Furthermore, the latest technological trends are presented in the pie chart below (See
Figure 14).

m Facilitating effective and natural communication between robots and
humans.

m Modifying and optimizing work and workplace environment to enhance
workers' well-being.

Customizing technology to meet operators' individual needs.

m Monitoring technologies that assess workers' real-time physical, cognitive or
psychological state and provide accurate feedback.

Figure 14. Technological Trends.
(Own elaboration, 2024)

The predominant trend, encapsulated in 48 publications, underscores the integration
of technology to modify and optimize work and workplace environments. This
enhances well-being, which in turn contributes to heightened productivity levels among
the workforce. This trend evidences a robust commitment to creating adaptive work

and environmental settings that prioritize the holistic well-being of employees.
Another notable trend, characterized by 40 publications, centers on facilitating

effective and natural communication between robots and humans, thereby facilitating

seamless human-robot collaboration within the framework of Industry 5.0. Following
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closely, a total of 39 publications suggest a burgeoning interest in the design of
customized technology design to meet operators’ individual needs. Lastly, while it
constitutes a smaller segment of the overall analysis, real-time monitoring
technologies that provide accurate feedback are attracting increased attention,
thereby presenting a promising opportunity for further exploration.

As demonstrated in the analysis above, Europe has emerged as the primary region
for researching the Industry 5.0 human-centric approach, focusing on well-being and
productivity, driven by the European Commission's financial support. Italy is currently
at the forefront, although global players like China and the United States are also
making significant contributions. The rise in publications since 2022 indicates a
continually increasing interest and investment in this research area. Moreover,
technologies that promote human-robot collaboration, such as virtual and augmented
reality, are gaining traction in the field of Industry 5.0.

3.6.6 Literature Review Results

This section offers a concise summary of each paper. This step aligns with the
PRISMA methodology, which seeks to emphasize relevant characteristics and support
the comparison of study methodologies and results. Furthermore, it helps in
recognizing patterns, similarities, and differences among the studies.

Result 1:

Digital Twin Technology of Human—Machine Integration in Cross-Belt Sorting System
by Qu et al. (2024)

This research examines the increased workload imposed on workers in the Chinese
express delivery sector in light of significant automation. It also presents a human-
machine integrated digital twin framework designed to balance employee well-being
with productivity. By integrating physiological data to monitor operator fatigue and
utilizing real-time simulations for optimization, this framework enhances worker

welfare and boosts the efficiency of cross-belt sorting systems.
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Result 2:

Human-centric robotic assembly line design: a fuzzy inference system approach for

adaptive workload management by Ghorbani et al. (2024).

This study highlights the shift to Industry 5.0 by introducing an innovative fatigue model
that focuses on ergonomic risk management in robotic assembly lines. The model
employs a fuzzy inference system to address ergonomic complexities. It evaluates
fatigue at both the task and worker levels, incorporating supportive robots to enhance
productivity and well-being. Empirical validation demonstrates its effectiveness in
reducing system costs by up to 47% while lowering fatigue and ergonomic risks. This
underscores Industry 5.0's dedication to sustainable productivity and worker

satisfaction.

Result 3:

Achieving productivity and operator well-being: a dynamic task allocation strategy for

collaborative assembly systems in Industry 5.0 by Calzavara et al. (2024).

This paper investigates the role of collaborative robots (cobots) in enhancing
productivity while simultaneously safeguarding worker well-being within the framework
of Industry 5.0. It emphasizes the importance of designing work environments with a
human-centric paradigm, considering critical factors such as ergonomics, mental
workload, and individual competencies to optimize both human performance and
systemic efficiency. Furthermore, the study introduces a flexible, real-time multi-
objective task allocation strategy for collaborative systems that adjusts the workload
distribution between the human operator and the cobot in accordance with the
operator's stress or energy levels. This methodology contributes to the equilibrium
between system performance and employee well-being by mitigating stress,
consequently leading to an overall increase in productivity.

Result 4:

A framework for human-robot collaboration enhanced by preference learning and
ergonomics by Mergalli Falerni et al. (2024).
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This study concentrates on improving employee well-being and efficiency in the
context of Industry 5.0 by suggesting a human-centered framework for human-robot
collaboration. It presents a preference-based optimization algorithm (AmPL-RULA)
that combines ergonomic evaluations (RULA) to enhance the configurations of
collaborative robots during tasks involving object handling. The research emphasizes
how incorporating user feedback and ergonomic factors boosts physical well-being by
alleviating workload, which in turn promotes enhanced working conditions and

productivity in joint assembly tasks.

Result 5:

Workplace Well-Being in Industry 5.0: A Worker-Centered Systematic Review by
Antonaci et al. (2024).

This paper provides a comprehensive review of methods for monitoring and evaluating
both physical and cognitive ergonomics within the framework of Industry 5.0, where
enhancing worker well-being is essential for boosting productivity and ensuring safety.
The research tackles three primary questions: the technologies employed to evaluate
worker well-being, the process of data analysis, and the objectives of these
assessments. Wearable inertial measurement devices and RGB-D cameras are
highlighted as the most prevalent tools for monitoring physical ergonomics, whereas
cardiac activity stands out as the key physiological metric utilized for cognitive
ergonomics. The review indicates that future investigations should aim at creating
multi-modal systems that combine both physical and cognitive evaluations, with a
focus on their practical implementation in actual industrial settings to enhance worker

well-being and productivity.

Result 6:

Maximizing efficiency and collaboration: Comparing Robots and Cobots in the
Automotive Industry- A Multi-Criteria Evaluation Approach by Mouhib et al. (2024)
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This paper investigates the role of collaborative robots (cobots) in Industry 5.0,
focusing on their relationship with traditional robots in assembly lines. The research
compares cobots and traditional robots using a case study from an automotive factory
and the Fuzzy AHP methodology. The findings reveal that cobots are effective for low-
volume, high-variability tasks, improving flexibility and worker well-being, but they do
not match the reliability, precision, or productivity of traditional robots in repetitive
tasks. The study proposes a decision-making framework to help industries choose the

right technology for specific tasks, balancing productivity and worker well-being.

Result 7:

Real-time Monitoring of Human and Process Performance Parameters in
Collaborative Assembly Systems using Multivariate Control Charts by Verna et al.
(2024).

This paper explores the challenges of manufacturing customized products in small
quantities, highlighting the need for adaptable Human-Robot Collaboration (HRC)
systems. The research introduces multivariate control charts as diagnostic tools to
monitor key factors such as assembly duration, quality assessment, defect rates, and
worker stress, providing a comprehensive view of both operational efficiency and
employee well-being. By incorporating real-time tracking of these elements, the
system can identify and address inefficiencies while prioritizing the welfare of
operators. This approach is demonstrated in the assembly of custom electronic boards
and can be automated through the HRC system's software or its digital twin. This
enhances performance without overloading operators, achieving a balance between

productivity and employee well-being in customized manufacturing environments.

Result 8:

An innovative integrated solution to support digital postural assessment using the
TACOs methodology by Khamaisi et al. (2024).

This paper introduces an innovative solution for ergonomic assessment in Industry 5.0

that overcomes the challenges of manual methods, which are often time-consuming
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and reliant on ergonomist expertise. By integrating wearable sensors and digital
posture assessments, the study aims to enhance worker well-being and productivity
through real-time monitoring of ergonomic risks. The proposed system features a
wearable suit and a software tool based on the Time-Based Assessment
COmputerized Strategy (TACOs) method, enabling even non-expert users to conduct
reliable postural evaluations. Preliminary tests in simulated industrial settings
demonstrate that this system provides more accurate and efficient results than
traditional methods, highlighting its potential for proactive intervention to reduce
musculoskeletal disorders and improve workplace safety and productivity.

Result 9:

Digital Twins in Industry 5.0 — a systematic literature review [Gemelos Digitales en la
Industria 5.0 — una Revision Sistematica de Literatura by Dominguez (2024).

This study explores the role of digital twins in advancing Industry 5.0, focusing on their
effects on worker safety, human-robot collaboration, and manufacturing efficiency.
Digital twins improve safety through real-time monitoring and proactive risk
management while also enhancing collaboration and boosting production efficiency.
However, there are challenges that need to be addressed, including data quality,
computational complexity, cybersecurity risks, and the consideration of human and
socio-economic factors. Overall, the study emphasizes the potential of digital twins to
create safer and more efficient industrial environments in the context of Industry 5.0.

Result 10:

Human-Centric Assistive Technologies in Manual Picking and Assembly Tasks: A
Literature Review by Lucchese et al. (2024).

The authors explore the role of Industry 4.0 assistive technologies in production and
logistics systems, focusing on their impact from a human-centric perspective. The
study reviews various assistive technologies, categorizing them by task type (e.g.,
picking, assembly), the type of support they offer (cognitive or motor), and potential
drawbacks. The findings highlight the importance of considering worker well-being and
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performance when developing and implementing these technologies, advocating for a
comprehensive, human-centric approach to enhance both productivity and operator
health.

Result 11:

“‘CANTINA 5.0"—A Novel, Industry 5.0-Based Paradigm Applied to the Winemaking
Industry in Italy by Venturi et al. (2024)

This document examines how Industry 5.0 concepts can be implemented in the Italian
winemaking sector, emphasizing the importance of sustainability, human-centered
approaches, and innovation. The winemaking sector, characterized by small and
medium enterprises (SMEs) as well as large companies with varying approaches,
faces challenges due to climate differences and seasonality. The CANTINA 5.0 project
aims to bridge these gaps by integrating human well-being, environmental monitoring,
and advanced technologies across diverse production conditions. Furthermore, the
study uses smart tools and questionnaires to monitor the health and well-being of
workers, as well as adopt novel environmental monitoring techniques, such as loT-
based sensors and gas chromatography, to improve the production process.
Additionally, sensory analysis of the wine, considering both chemical and emotional

characteristics, is utilized to optimize quality in alignment with Industry 5.0 principles.

Result 12:

Advancing human-robot collaboration in handcrafted manufacturing: cobot-assisted
polishing design boosted by virtual reality and human-in-the-loop by Ciccarelli et al.
(2024).

This article examines the use of collaborative robots (cobots) in the handcrafted
manufacturing sector, with a focus on the fashion industry and the reduction of work-
related risks. Unlike traditional manufacturing, handcrafted processes, such as leather
shoe polishing, present challenges due to the need for precision, adaptability, and
nuanced decision-making. The study suggests utilizing collaborative robots (cobots)
during the initial polishing phase to manage physically demanding tasks. This
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approach allows artisans to concentrate on the finalization and quality control
processes. Additionally, the research incorporates the concept of human-in-the-loop
(HITL) and virtual reality simulations to enhance human-robot collaboration, ensuring
safety, ergonomics, and efficiency. By addressing human factors in the design and
development of cobot systems, this study provides insights for effectively integrating
collaborative robotics into craftsmanship, aligning with both industrial performance
goals and worker well-being.

Result 13:

RHYTHMS: Real-time Data-driven Human-machine Synchronization for Proactive
Ergonomic Risk Mitigation in the Context of Industry 4.0 and Beyond by Ling et al.
(2024)

The challenges associated with human-machine work systems (HMWS) within the
frameworks of Industry 4.0 and 5.0 are examined, with an emphasis on the necessity
for real-time synchronization between humans and machines. HMWS combines
human cognitive flexibility with machine precision, but the lack of real-time information
sharing, human instability, and complexities in smart networking environments can
hinder synchronous coordination. RHYTHMS is a solution proposed by the authors
that utilizes a service-oriented human-to-machine architecture (SOH2M) along with
model reference adaptive fuzzy control to facilitate real-time data sharing and enhance
synchronization. A real-life assembly case study demonstrates how this approach
proactively mitigates ergonomic risks, supporting a human-centric manufacturing

model aligned with the principles of Industry 5.0.

Result 14:

Updating design guidelines for cognitive ergonomics in human-centred collaborative
robotics applications: An expert survey by Gualtieri et al. (2024).

The discussion centers on the significance of cognitive ergonomics in designing

collaborative human-robot systems within the framework of Industry 5.0. The goal is
to create and validate guidelines that aid non-experts in developing user-centered
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assembly applications, highlighting the factors that enhance workers' cognitive
responses. The guidelines were created through an extensive review of scientific
literature and validated through feedback from field researchers and a survey of 108
international experts. The results confirm that integrating human factors into the design
of collaborative applications can enhance system adaptability and resilience,

improving worker safety, ergonomics, and well-being.

Result 15:

Navigating HR industry 5.0: Seizing opportunities and confronting challenges by
Shukla et al. (2024).

The strategic HR value chain model is introduced within the context of Industry 5.0,
emphasizing the necessity for HR practices to align with organizational goals to drive
sustainable growth. This model highlights the importance of measurable outcomes,
continuous improvement, and a people-centric approach. It also underscores the role
of technological integration in optimizing core HR functions such as talent acquisition,
learning and development, performance management, and total rewards. Focusing on
employee well-being and development fosters a positive workplace culture that drives
innovation and success in the digital era. The model serves as a guide for navigating
the changing HR landscape, allowing organizations to effectively address challenges

and seize opportunities in today's business environment.

Result 16:

Development of a novel machine learning-based approach for brain function
assessment and integrated software solution by Qu et al. (2024).

The integration of cybernetic principles and data-driven methods seeks to enhance
rehabilitation processes in healthcare, particularly within the framework of Industry 5.0,
which emphasizes human-centered solutions. This research concentrates on
developing a comprehensive multimodal approach to combine rehabilitation data
through the utilization of electroencephalogram (EEG) and functional near-infrared
spectroscopy (fNIRS) for evaluating motor imagery (MI) tasks. By incorporating
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techniques such as Granger causality and a brain region adjacency matrix, this study
integrates  electrophysiological and hemodynamic data, enhancing the
complementarity and understanding of neural processes. The findings indicate that
the multimodal fusion method provides higher accuracy and stability, suggesting its
potential for broader research applications. These results have been used to develop
an intelligent rehabilitation platform that supports personalized medicine and
enhances medical practices by offering a personalized and more effective approach
to patient care. This research contributes to rehabilitation modeling, equipment design,
and the application of cybernetics in healthcare.

Result 17:

Determining Cognitive Workload Using Physiological Measurements: Pupillometry
and Heart-Rate Variability by Ma et al. (2024).

This study introduces a new method for measuring cognitive workload in
manufacturing environments that are highly digitalized and human-centered. This
method links task complexity, operator expertise, and cognitive workload to overall
operator performance. The approach was tested through experiments in which
operators performed assembly tasks on a Wankel engine block. During these tasks,
physiological signals were recorded, including heart rate variability and pupillometry.
The results indicated statistically significant differences in cognitive load across
different task complexities. Experts typically demonstrated lower cognitive load
compared to others. This approach provides a more accurate assessment of cognitive
load than traditional methods, highlighting its potential use in optimizing workplace

design.

Result 18:

Information Technology based on Industry 5.0 Human Place into loT-and CPS-based
Industrial Systems by Noori et al. (2024).

This study explores the intersection of art design and Human-Cyber-Physical Systems
(HCPS) within the context of Industry 5.0, with a specific focus on applications of
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Emotional Intelligence (El). The research explores how HCPS can improve El by
integrating system design, theoretical evaluation, and methodology development with
the human-in-the-loop concept. This integration enhances system efficiency and
performance. The results underscore the synergistic relationship between technology,
art, and the creative industries, suggesting future research directions and applications
that utilize digital transformation to promote enhanced human-centric design and

creativity.

Result 19:

A human-centric system combining smartwatch and LiDAR data to assess the risk of
musculoskeletal disorders and improve ergonomics of Industry 5.0 manufacturing
workers by Pistolesi et al. (2024).

These authors present a privacy-preserving system aimed at monitoring the posture
of workers engaged in assembly and disassembly tasks, addressing the widespread
issue of back pain and its associated costs. The system utilizes artificial intelligence
to track both the upper and lower body postures of workers during repetitive activities
such as screwing and soldering. It incorporates inertial sensors in smartwatches and
LiDAR technology while adhering to the ISO 11226 European standard. The system
collects data, including information on posture and movement, in a way that ensures
it is non-identifiable, meaning it cannot be traced back to specific individuals. This
approach preserves worker privacy. The results indicate an impressive 98% accuracy
in detecting posture, which helps identify poor posture habits and reduce the risk of

musculoskeletal disorders.

Result 20:

Analyzing psychophysical state and cognitive performance in human-robot
collaboration for repetitive assembly processes by Gervasi et al. (2024).

The research investigates how human-robot collaboration (HRC) affects worker well-

being, specifically looking at stress, cognitive load, and fatigue during repetitive
assembly tasks. By employing non-invasive biosensors to monitor the operator's
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psychophysical state in real-time, the study underscores the significance of
understanding cognitive workload in order to improve both worker well-being and
performance. The results indicate that using a collaborative robot (cobot) decreases
stress and cognitive load, particularly during the initial phase of a shift, and results in
fewer process failures compared to manual methods. This approach underscores the
potential of using non-invasive monitoring to improve collaboration, reduce physical

and mental strain, and enhance productivity in Industry 5.0 environments.

Result 21:

Human Digital Twin in the context of Industry 5.0 by Wang et al. (2024).

This paper examines the concept of the Human Digital Twin (HDT) in the context of
Industry 5.0. HDTs are digital representations of individuals that incorporate human
characteristics into system design and performance, with the goal of improving human-
system collaboration. The study tackles the absence of standardized frameworks and
architectures for HDTs in practical applications, offering a thorough review of their
evolution, proposed definitions, and conceptual frameworks. It also offers insights into
how HDTs can help realize human potential, meet diverse needs, and support human-

centric goals in manufacturing systems.

Result 22:

Evaluating the Impact of Al-Based Sustainability Measures in Industry 5.0: A
Longitudinal Study by Valeriya et al. (2024).

The study emphasizes the role of Al-driven sustainability metrics in Industry 5.0,
demonstrating how artificial intelligence and human expertise collaborate to enhance
sustainability, financial performance, and employee satisfaction. The human aspect
saw significant improvements, with employee satisfaction rising from 4.2 to 4.7 and
work-life balance scores increasing from 4.1 to 4.6.

Result 23:
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Human-Centric Al Adoption and Its Influence on Worker Productivity: An Empirical
Investigation by Shchepkina et al. (2024)

This empirical study explores the effects of human-centric Al deployment in the
industrial sector, highlighting transformative changes in the workplace. It highlights a
35.5% increase in productivity due to Al's ability to automate repetitive tasks, provide
data-driven insights, and enhance decision-making. Additionally, employee
satisfaction improved by 20.6%, with better work-life balance and job happiness.
Structured Al training programs resulted in a 29.6% boost in skill development, and
departments experienced significant cost reductions of up to 40%.

Result 24:

Human-Centered Edge Al and Wearable Technology for Workplace Health
and Safety in Industry 5.0 by Nguyen et al. (2024).

This research explores how human-centered edge Al and wearable technology can
be integrated to enhance workplace health and safety in Industry 5.0. It emphasizes
the significance of real-time monitoring through wearable sensors that utilize Industrial
Internet of Things (lloT) technologies. These sensors track physiological and
environmental conditions to prevent hazards and enhance overall efficiency.
Moreover, Al allows for immediate decision-making by processing data locally,
reducing latency, and addressing privacy concerns. Despite limited computing power
and battery life, the study highlights the potential of these technologies for a safer,

more productive work environment.

Result 25:

Digital Transformation Towards Human-Centricity: A Systematic Literature Review by
Crnobrnja et al. (2024).

This study examines the intersection of "Human-Centricity" and "Industry 5.0" in

manufacturing and identifies key research directions for future development. It
emphasizes the essential role of worker well-being in improving productivity within the
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Industry 5.0 framework. Specific areas for further exploration include human-robot
interaction, Al integration, ergonomics, safety, and training for skills development. The
paper proposes that a human-centric approach, which focuses on both well-being and
skill enhancement, is essential for improving productivity and promoting sustainable
manufacturing practices in Industry 5.0.

Result 26:

Designing Augmented Reality Assistance Systems for Operator 5.0 Solutions in
Assembly by Cimini et al. (2024)

The integration of Augmented Reality (AR) into human-centered smart manufacturing
systems within Industry 5.0 has the potential to significantly enhance operator
performance, especially in assembly and disassembly tasks. This approach utilizes
AR technology to provide real-time information and guidance, enhancing efficiency
and accuracy in manufacturing. It highlights the importance of human-centered design
in AR applications and recommends integrating AR into manual workstations to boost
operator productivity and well-being. Key findings highlight the importance of
considering user groups, selecting suitable devices for usability, and creating clear

instructions.

Result 27:

A Meta-heuristic Approach for Industry 5.0 Assembly Line Balancing and Scheduling
with Human-Robot Collaboration by Zhang et al. (2024).

This research examines how human-robot collaboration (HRC) can improve assembly
line balancing in Industry 5.0, focusing on enhancing productivity and operator well-
being. It presents an adaptive simulated annealing (SA) framework with innovative
task allocation mechanisms, including a new fitness value calculation and a heuristic
approach for optimizing workload distribution between human and robot operators.
The findings indicate that this meta-heuristic approach significantly boosts productivity,
reduces cycle times, and enhances operators' welfare by strategically balancing tasks
and decreasing the number of operators required at each workstation.
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Result 28:

Promoting human-centered manufacturing through Lean Ergonomics—a structural

equation model for ergonomics and management data by Brunner et al. (2024).

The Stress-Strain Concept (SSC) is utilized to explore the relationship between
ergonomics and productivity on the shop floor, drawing on empirical data from manual
work processes in chemical reactor operations. By analyzing ergonomic factors such
as physical strain, health, and age alongside business data like work process times,
the study finds that stress and physical strain significantly affect productivity,
particularly when considering health. The results indicate that ergonomic
improvements can lead to lasting benefits that enhance productivity. This suggests

that focusing on worker well-being can result in more efficient work processes.

Result 29:

A Review of HRV and EEG Technology Applications in Industry 5.0: Emphasising
Manufacturing Efficiency and Worker Well-Being by Chulakit et al. (2024).

This review paper examines the application of physiological monitoring techniques,
specifically Heart Rate Variability (HRV) and Electroencephalography (EEG), in the
manufacturing industry within the framework of Industry 5.0's human-centric approach.
The text emphasizes the significance of biometric tools in enhancing worker well-
being, managing cognitive workload, and improving human-machine interactions. It
outlines the benefits of heart rate variability (HRV) in monitoring autonomic nervous
system activity and assessing health outcomes. Additionally, electroencephalography
(EEG) is highlighted for its capability to map psychological states and support Brain-
Computer Interface technologies. By integrating these monitoring techniques, the
paper suggests that manufacturing operations can prioritize both worker health and
operational efficiency.

Result 30:
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The Impact of New Technologies on Occupational Safety and Health from the Point of
View of Their Academic Interest by Cuadrado-Cabello et al. (2024).

This study examines how emerging technologies from Industry 4.0 and 5.0 enhance
Occupational Safety and Health (OSH) for workers. By analyzing articles from
SCOPUS and Web of Science, the research reveals that the main focus of these
technologies is on risk assessment. Wearable technology and artificial intelligence (Al)
are identified as the most relevant technologies for improving OSH. The paper
highlights the significant potential of these technologies to enhance worker safety and
well-being, particularly through their applications in monitoring health metrics and

predicting risks.

Result 31:

Gamification for Manufacturing (GfM) Towards Era Industry 5.0 by Baroroh et al.
(2024)

This research examines Gamification for Manufacturing (GfM) in the context of
Industry 5.0, emphasizing its potential to improve workers' well-being and productivity.
By prioritizing human-centric values, GfM offers a promising approach to achieving
these objectives. The framework is intended to assist professionals and researchers
in effectively integrating GfM into Industry 5.0.

Result 32:

The Importance of Soft Skills for Computing Graduates in the Context of the Fifth
Industrial Revolution by Enakrire et al. (2024).

A systematic literature review was conducted to examine the changing demands of
the Fifth Industrial Revolution on computer science curricula. It emphasizes the need
for graduates to possess both technical skills and essential soft skills, such as
collaboration and interpersonal abilities. The findings support a competency-based
education framework that integrates these skill sets to prepare graduates for a future
centered on human-machine collaboration. The paper suggests that educational
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programs should regularly update their curricula to promote the integration of human-
machine interaction, organizational change, and increased productivity while also

fostering graduates’ self-confidence and overall development.

Result 33:

Challenges in Developing Digital Twins for Labor-intensive Manufacturing Systems: A

Step towards Human-centricity by Gotz et al. (2024).

This paper examines the challenges of developing Digital Twins in labor-intensive
manufacturing systems that depend on human workers. While Digital Twins can
enhance efficiency and improve decision-making, their integration is complicated by
the unpredictable nature of human involvement. The study identifies key obstacles in
creating data-driven Digital Twins and proposes a framework to support their
implementation. A case study conducted with two companies illustrates the application
of Digital Twins for decision support in job scheduling within hybrid machine-worker
environments, with a focus on worker well-being. The findings emphasize the need to
consider both technological and human factors for effective Digital Twin solutions in

labor-intensive manufacturing.

Result 34:

MetaStates: An Approach for Representing Human Workers' Psychophysiological
States in the Industrial Metaverse by Toichoa Eyam et al. (2024).

The concept of MetaStates is introduced as digital representations of a human
worker’s psychophysiological states, aiming to address the challenge of accurately
simulating human factors in industrial contexts. Enhancing photo-realistic avatars with
detailed graphical representations of physical and mental states improves the
simulation of human workers during tasks. By integrating MetaStates into industrial
simulations, companies can better utilize the Industrial Metaverse. This approach
keeps human workers central to the system while also increasing the accuracy and

effectiveness of simulations for decision-making and operational improvements.
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Result 35:

Surveying the landscape of Human-Centric Manufacturing in Lombardy: Insights from

the practices and perspectives of Italian enterprises by Locatelli et al. (2024).

This paper analyzes the technological readiness and human-friendliness of several
Italian companies through a survey that evaluates technology development, funding
allocation, and worker integration. The findings reveal a positive attitude toward
innovation and human involvement, though a fully realized human-centric approach
remains a work in progress. Ultimately, the insights gained provide valuable best
practices to facilitate the transition toward more sustainable and human-centered

digital manufacturing systems.

Result 36:

Industry 5.0: prioritizing human comfort and productivity through collaborative robots

and dynamic task allocation by Granata et al. (2024).

This paper introduces a dynamic multi-objective task allocation system aimed at
optimizing the use of collaborative robots (cobots) in production environments. It
monitors human well-being through physiological and performance data and
reallocates tasks in real-time to prevent overwork and fatigue, thereby enhancing both

efficiency and human involvement.

Result 37:

Towards Coordinating Machines and Operators in Industry 5.0 through the Web of
Things by Picone et al. (2024).

This paper introduces a groundbreaking architecture for Industry 5.0, emphasizing the
integration of human-centric technologies through the Web of Things (WoT) standard.
A central element of this architecture is the Operator Thing (OT), which serves as a
digital replica of the human operator. The OT continuously monitors well-being factors

such as stress and discomfort. The system adjusts in real-time to improve the synergy
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between humans and machines while prioritizing worker comfort. By incorporating
human conditions into operational procedures, this approach creates a more
empathetic industrial environment. The solution has been validated through
interdisciplinary evaluations and aligns with the human-centered principles of Industry
5.0.

Result 38:

Revolutionizing Industry 5.0: Harnessing the Power of Digital Human Modelling by
Donmezer et al. (2024).

This paper explores the transformative potential of Digital Human Modelling (DHM) in
advancing Industry 5.0, highlighting its applications across various sectors such as
manufacturing, textiles, robotics, and energy. DHM facilitates the design and
optimization of human-centered systems that enhance ergonomics, safety, and
productivity. In manufacturing, it optimizes production processes by focusing on
human factors to create smart factories. In textiles, DHM improves ergonomic
workstation design for better worker comfort and efficiency, while in robotics, it ensures
safe and productive human-robot interactions. In the energy sector, it aids in
optimizing energy consumption and promoting sustainable practices. Overall, the
integration of DHM into these sectors can lead to significant advancements in
efficiency, safety, productivity, and sustainability, offering valuable insights for
researchers and practitioners seeking to harness its full potential.

Result 39:

Enhancing Human Safety in Production Environments Within the Scope of Industry
5.0 by Aksoy et al. (2024).

The study proposes an Al-assisted system that analyzes sensor data to proactively
identify hazardous situations and risky behaviors in production environments, such as
machine malfunctions, gas leaks, and falls, facilitating timely interventions. It focuses
on developing a system for real-time risk detection and utilizes predictive capabilities
to enhance worker safety in the context of Industry 5.0.
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Result 40:

A Framework for Enhancing Human-Agent Interaction in Cyber-Physical Systems:
OCRA Measurement Perspective by Meza et al. (2024).

This paper introduces a Cyber-Physical System (CPS) framework designed for
Industry 5.0. The framework incorporates human factors to enhance both human and
system performance. By utilizing the OCRA index to evaluate ergonomic impacts, the
system dynamically adjusts task planning and workloads to minimize physical strain
by aligning tasks with human capabilities. The approach was tested in a simulated

flexible manufacturing system using a multi-agent systems paradigm.

Result 41:

Exploiting Immersive Virtual Reality for Investigating the Effects of Industrial Noise on

Cognitive Performance and Perceived Workload by Evangelista et al. (2024).

The investigation into the impact of auditory stimuli on cognitive performance and the
well-being of operators within confined environments underscores the human-centric
approach characteristic of Industry 5.0. Immersive Virtual Reality (IVR) serves as a
tool to simulate conditions endemic to confined spaces, thereby facilitating the
comparison of effects between stationary and intermittent noise on cognitive load. The
Stroop Test, in conjunction with a modified noise-induced task load index, provides a
framework for evaluating cognitive performance and perceived exertion. Additionally,
Heart Rate Variability (HRV) is employed to quantify physiological responses. The

findings reveal a significant influence of noise on cognitive performance.
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Result 42:

Identification of Criteria for Enabling the Adoption of Sustainable Maintenance
Practice: An Umbrella Review by Vasic et al. (2024).

This study examines the transition from traditional industrial maintenance to
sustainable maintenance (SM) within existing industrial ecosystems by utilizing an
umbrella review (UR) methodology. It identifies 43 key criteria in maintenance
decision-making (MDM) and highlights the most discussed factors, such as
environmental pollution, energy consumption, and worker health and safety. The study
also employs Bayesian Network Analysis to determine that labor costs, employee
satisfaction, and resource consumption are the most influential criteria. Additionally, it
notes a shift in research focus after 2021 from economic and technical factors toward

a more balanced approach that includes social and environmental considerations.

Result 43:

The realities of achieving a Smart, Sustainable, and Inclusive shopfloor in the age of
Industry 5.0 by Bonello et al. (2024).

This study investigates integrating Industry 5.0 principles—sustainability, human-
centricity, and resilience—into the manufacturing sector to address the challenges
faced by workers with disabilities. It identifies three primary issues: the tension
between engineers and the inclusion of disabled workers, insufficient design
knowledge for creating inclusive workstations, and a lack of social sustainability in
disability employment. The study proposes future research and action focused on
enhancing inclusive design knowledge and promoting social sustainability for
individuals with disabilities in the manufacturing industry.

Result 44:

Industry 5.0 Adoption Among Heavy Machinery Producers: The Potential of Artificial
Intelligence in Social Sustainability Facilitation by Valtonen et al. (2024).

83



The exploration focuses on how artificial intelligence (Al) can enhance social
sustainability and worker well-being in the context of Industry 5.0, particularly for heavy
machinery operators. It identifies challenges such as cognitive and physical strain,
safety concerns, and skill gaps. Al-driven solutions are presented that improve
operators' health, safety, emotional well-being, work efficiency, and access to training.
The findings indicate the significant potential of Al to boost worker productivity and
well-being in industrial settings.

Result 45:

Augmented Reality Towards Industry 5.0: Improving Voice and Tap Interaction Based

on User Experience Feedback by Carranga et al. (2024).

To examine the role of Extended Reality (XR), particularly Augmented Reality (AR), in
industrial operations, this study focuses on preventive and reactive maintenance while
emphasizing the importance of user-friendly design to enhance efficiency and
decrease dependence on specialized technicians. This research involved the
development and testing of an AR application with 27 participants, including both
experienced and novice users. The findings highlighted significant improvements in
user experience, particularly in areas like fluidity, responsiveness, and intuitiveness.
Furthermore, the study showed that voice commands were as effective as tap
commands, emphasizing the importance of user interaction in optimizing AR

applications for Industry 5.0.

Result 46:

UX and Industry 5.0: A Study in Repairing Equipment Using Augmented Reality by
Margolis et al. (2024).

For the study of an Augmented Reality (AR) application for industrial equipment
diagnostics, this study involved 18 participants from different professional
backgrounds. The diverse expertise of the participants aimed to provide varied insights
into the application’s effectiveness and usability in real-world scenarios. Overall, the

system received positive feedback; however, several areas for improvement were
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identified. User experience (UX) varied among different profiles, with human-centered
design experts giving more critical feedback. These findings emphasize the
importance of user-centered design and its impact on interactions with new

technologies in Industry 5.0.

Result 47:

The Effect of Digitalization and Human-Centric on Companies’ Production
Performances by Wan et al. (2024).

This study stated that aligning digitalization with human-centricity is essential for
improving production performance. It revealed an S-shaped relationship between
production throughput and process flexibility, indicating that higher levels of human-
centric approaches combined with digitalization can enhance overall performance.
The research emphasizes the importance of a balanced approach to human-centricity

in production systems, considering the roles of managers and engineers.

Result 48:

A framework to design smart manufacturing systems for Industry 5.0 based on the

human-automation symbiosis by Peruzzini et al. (2024).

This study introduces a framework for Smart Manufacturing Systems Design (SMSD)
within the context of Industry 5.0, with a particular focus on the collaboration between
humans and automation. It utilizes an "Augmented Digital Twin" (ADT) to create a
digital representation of all factory components—machines, robots, personnel, and the
surrounding environment—facilitating Al applications that enhance productivity as well
as employee well-being. By fostering knowledge sharing and co-evolution between
human operators and machines, this methodology significantly improves collaboration
and mutual understanding. The approach has been validated through partnerships
with four industrial firms, seeking to rectify the deficiencies observed in Industry 4.0 by
integrating human factors into the architecture of smart manufacturing systems.
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Result 49:

Rooting out the root causes of order fulfillment errors: a multiple case study by Helm
et al. (2024).

This study investigates the fundamental causes of errors in warehouse operations
utilizing intelligent video analysis (IVA). Through the examination of numerous case
studies from companies implementing IVA in outbound processes, such as order
picking, packing, and sorting, the research determines that many errors frequently
regarded as human mistakes actually arise from erroneous customer claims, inbound
warehouse inaccuracies, or malfunctioning technology. The findings underscore the
intricate interplay of technical, organizational, and human factors, yielding insights for

the enhancement of error reduction strategies.

Result 50:

A scoping review of human robot interaction research towards Industry 5.0 human-

centric workplaces by Panagou et al. (2024).

This scoping review explores how the design features of robots affect human
operators in the context of Industry 4.0 and 5.0. By analyzing 32 articles, complex
relationships between various robot design elements were revealed—such as
appearance, capabilities, and communication features—and operators' perceptions of
reliability, safety, and teamwork. Robot appearance and capabilities shape operators'
perceptions of performance, while effective collaboration relies on strong
communication skills. The results provide practical guidance for designers and
practitioners, highlighting the significance of operator involvement, awareness of robot
capabilities, and effective training.

Result 51:

Application of supportive and substitutive technologies in manual warehouse order
picking: a content analysis by Grosse (2024).
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The research examines the use of supportive and substitutive technologies in manual
warehouse order picking, a labor-intensive and time-consuming process that affects
supply chain efficiency. It underscores the importance of human factors and the
interaction between workers and technology within socio-technical systems. The study
explores the potential benefits and challenges of technologies such as augmented
reality and exoskeletons, highlighting the need for further research on their integration.

Result 52:

Unravelling human-centric tensions towards Industry 5.0: Literature review, resolution

strategies and research agenda by Pacheco et al. (2024).

This study identifies 20 key tensions related to automation, well-being, safety,
education, and value creation. These tensions are categorized into four dimensions:
learning, organizing, belonging, and performing. The research develops a framework
to address these tensions, offering resolution strategies aimed at enhancing worker
well-being and performance. The findings emphasize the critical role of shop floor
workers in adapting to Industry 5.0 and provide actionable insights for manufacturing
companies seeking to integrate human-machine collaboration effectively.

Result 53:

A comprehensive STPA-PSO framework for quantifying smart glasses risks in
manufacturing by Karevan et al. (2024).

This study aims to quantify the risks associated with using smart wearables, such as
smart glasses, in complex systems under Industry 5.0. It addresses a gap in the
existing literature concerning the risks of human error by proposing a methodology
called STPA-PSO. This approach combines Systems-Theoretic Process Analysis
(STPA) to identify hazards with Particle Swarm Optimization (PSO) to optimize risk
assessments. Through a case study focused on refrigerator assembly, the
methodology proves effective in evaluating risks related to industrial, financial, and
occupational health and safety aspects.
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Result 54:

Enhancing Workplace Safety through Personalized Environmental Risk Assessment:

An Al-Driven Approach in Industry 5.0 by Lemos et al. (2024).

This paper introduces a comprehensive system designed to monitor environmental
risks in the workplace, with a specific focus on personalized health assessments
aimed at improving worker well-being. The system tracks various environmental
factors, including dust, noise, radiation, and temperature, while also considering
workers' health histories. This allows for customized risk assessments and
recommendations tailored to individual needs. Utilizing machine learning algorithms,
the system provides actionable alerts to enhance safety and inform decision-making.
Additionally, it prioritizes data privacy and protection, addressing the critical issue of

managing sensitive health and exposure information.

Result 55:

Enhancing worker-centred digitalisation in industrial environments: A KPI evaluation

methodology by Abril-diménez et al. (2024).

This paper proposes a new methodology for Industry 5.0 that integrates human
workers as key participants in the digitalization process. It addresses gaps in existing
Industry 4.0 evaluation methods. Unlike KPI-driven approaches that focus mainly on
technology, this methodology assesses the direct and indirect benefits of technological
transformations for both workers and stakeholders. It includes tools for evaluating
technological integration, process optimization, and human factors. A real case study
demonstrates its application by comparing the digitalization processes of three

companies.

Result 56:

Integrating Al with Lean Manufacturing in the Context of Industry 4.0/5.0: Current
Trends and Applications by Boursali et al. (2024).
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This article explores the role of Artificial Intelligence (Al) in improving lean
manufacturing processes. It highlights Al's influence on smart manufacturing,
sustainability, maintenance optimization, production efficiency, and quality
enhancement. The study also emphasizes the importance of integrating human factors
and digitalization. It reviews relevant literature from the SCOPUS database and
advocates for further research into sustainable, human-centered manufacturing

practices.

Result 57:

Metaverse for Industry 5.0 by Majumder & Dey (2024).

This book chapter explores the metaverse in the context of Industry 5.0, emphasizing
its connection to the human-centric vision of Web 4.0. It presents the metaverse as a
digital ecosystem that enables collaboration between individuals and organizations,
leveraging technologies like Al, VR, AR, MR, and |oT. The integration of the metaverse
aims to enhance worker well-being and productivity through tailored solutions. The
chapter covers the metaverse's evolution, advantages, challenges, ethical issues, and
applications in sectors such as healthcare, construction, and manufacturing,

concluding with a framework for its human-centric integration in Industry 5.0.

Result 58:

Human in the loop: revolutionizing industry 5.0 with design thinking and systems
thinking by Dehbozorgi et al. (2024).

This study examines Human-Centric Manufacturing and Systems (HCM and HCS) in
the context of Industry 5.0, with a focus on worker welfare and sustainability. It
highlights key principles such as safety, inclusivity, and empowerment within the
human-centric approach. The paper discusses the effective integration of Design and
Systems Thinking into HCM. It proposes a workshop at the MADE Competence Centre
aimed at raising awareness and promoting these principles throughout the system life
cycle. The goal is to encourage the development of HCS that prioritize both worker
well-being and system efficiency in Industry 5.0.
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Result 59:

Informing User-Centered Approaches To Augmented Custom Manufacturing
Practices by Franze et al. (2023).

This study examines how augmented and mixed reality (AR/MR) technologies can
boost productivity and efficiency in Australian small-to-medium (SME) custom
manufacturers while addressing workforce challenges in Industry 4.0. It also considers
how AR/MR can aid the transition to a human-centric Industry 5.0 model that prioritizes
fabricator well-being. Findings from industry expert interviews highlight the benefits of
reducing task uncertainties and improving fabrication practices. The research
identifies future development areas, emphasizing the need for tailored solutions to

enhance accessibility and competitiveness in custom manufacturing.

Result 60:

Artificial Intelligence for Smart Manufacturing in Industry 5.0: Methods, Applications,
and Challenges by Nguyen et al. (2023).

This study examines the role of Artificial Intelligence (Al) in Industry 4.0 and its
evolution into Augmented Intelligence (Aul) in Industry 5.0, where Al is integrated with
human intelligence to enhance manufacturing processes. It surveys Al-based
methods, applications, and challenges in smart manufacturing within the Industry 5.0
framework. The study demonstrates how these technologies can improve productivity
while ensuring the well-being of human workers. Additionally, it provides valuable
insights into the potential benefits and concerns related to Al and Aul in advancing

smart manufacturing.

Result 61:

Empowering People in Human-Robot Collaboration: Why, How, When, and for Whom
by Johansen et al. (2023).
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This workshop focuses on empowering individuals in human-robot collaboration
(HRC) within Industry 5.0 by addressing the genuine empowerment offered by HRC
applications. It promotes a comprehensive approach involving user modeling, adaptive
interfaces, interaction design, and situational awareness. The goal is to explore when
HRC empowers humans and the benefits for all involved. Experts from fields such as
robotics, engineering, ethics, psychology, and artificial intelligence are invited to
contribute to the future of human-robot partnerships, aiming to enhance performance

and work quality.

Result 62:

Evaluation of Lean Off-Site Construction Literature through the Lens of Industry 4.0
and 5.0 by Hadi et al. (2023).

This study investigates the implementation of lean manufacturing principles within the
context of off-site construction (OSC). The review accentuates significant interactions
between lean-OSC tools and the principles of Industry 4.0 and 5.0, identifying
resilience as a critical integrative concept. Furthermore, the study delineates research
deficiencies in social and environmental domains, encompassing mental health,
assistive technologies, and end-of-life design. Human-centered technologies,
including collaborative robots and exoskeletons, have the potential to enhance worker

empowerment, diversity, and inclusion.

Result 63:

Multimodal Assessment of Cognitive Workload Using Neural, Subjective and
Behavioural Measures in Smart Factory Settings by Zakeri et al. (2023).

The mental workload and stress of human workers in collaborative robot (cobot)
environments within Industry 5.0 are examined, focusing on how task complexity,
cobot speed, and payload capacity influence stress levels. The results indicate that
task complexity and cobot speed significantly affect mental stress, with physiological
measures such as EEG and fNIRS providing more accurate assessments than
traditional methods. Utilizing regression analysis and artificial neural networks (ANN),
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the research highlights the potential of these physiological measures to replace
conventional stress evaluation methods, particularly in predicting missed beeps,
where the highest correlation and accuracy were observed.

Result 64:

Development of a Neuroergonomic Assessment for the Evaluation of Mental Workload
in an Industrial Human—Robot Interaction Assembly Task: A Comparative Case Study
by Caiazzo et al. (2023).

This study explores the mental workload of operators engaged in human-robot
interaction (HRI) tasks, specifically in the context of collaborative robots (cobots) within
Industry 5.0. It compares two assembly task scenarios: one without robot interaction
and one with it. To assess mental workload, a combination of subjective (NASA TLX)
and objective (EEG) measurements is used, with cognitive workload characterized by
analyzing brainwave power ratios. The results show that interacting with robots
significantly reduces mental workload and improves task performance, as evidenced
by a higher number of components assembled correctly when robots are involved.
This research contributes to the field of neuroergonomics by providing insights into
how collaborative robots can enhance operator well-being and efficiency in industrial

settings.

Result 65:

A human-cyber-physical system for Operator 5.0 smart risk assessment by Simeone
et al. (2023).

This paper presents the development of a human-cyber-physical system (HCPS)
designed to assess operator risk in the context of Industry 5.0. The HCPS offers an
advanced method for risk assessment by integrating various types of sensing data,
including physiological, environmental, and manufacturing variables. It analyzes
complex patterns and interactions, dynamically adjusting to changing conditions to

create real-time risk profiles for operators and work processes. The system provides
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timely alerts that enable proactive safety interventions and optimize work processes.
A simulated case study validates this framework.

Result 66:

Heart Rate Variability Measurement to Assess Acute Work-Content-Related Stress of
Workers in Industrial Manufacturing Environment - A Systematic Scoping Review by
Tran et al. (2023).

This study evaluates heart rate variability (HRV) as a real-time indicator of acute work-
content-related-stress (AWCRS) in industrial environments. After analyzing 14 studies
conducted between 2000 and 2022, it is clear that, although HRV and AWCRS were
measured in several instances, there is not enough evidence to establish a link
between them in industrial work. Additionally, no randomized controlled trials were
identified, leaving the relationship between HRV and AWCRS still unclear. The review
emphasizes the necessity for more rigorous research to validate HRV as a reliable
indicator of worker stress, highlighting its potential role in monitoring well-being within
the Operator 4.0 framework.

Result 67:

Safety At Work Within Industry 5.0-QUO VADIS [ZASTITA NA RADU U SKLOPU
INDUSTRIJE 5.0-QUO VADIS] by Kralj et al. (2023).

Since the introduction of Industry 4.0 in 2011, a global digital transformation has been
underway, characterized by advanced ICT solutions, robotics, and new expert roles
that enhance production. In 2015, Industry 5.0 emerged, emphasizing the importance
of human potential alongside the Internet of Things (loT) and Big Data to improve job
quality and workers' skills. This study performs a literature review alongside a
secondary data analysis, incorporating theoretical discussions, reports, and academic
studies to strengthen its exploration of technological advancements in Industry 5.0.
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Result 68:

Human-centred data-driven redesign of simulation-based training: a qualitative study
applied on two use cases of the healthcare and industrial domains by Brunzini et al.
(2023).

This paper explores simulation-based training in both industrial and healthcare
sectors, within the context of Industry 5.0. It evaluates simulations from the learner's
viewpoint, aiming to enhance performance and the learning process by taking into
account physical, cognitive, and emotional factors. It includes data-driven guidelines
for optimizing and redesigning training, applicable to both traditional and
virtual/augmented reality systems. Two use cases are presented: a healthcare
simulation for lumbar puncture procedures and an industrial simulation for replacing
tractor engine oil filters. Despite the differences in content, the results reveal
similarities in performance, cognitive processes, and emotional states. This allows for
the development of a common set of guidelines to optimize simulations across various

sectors.

Result 69:

An Experimental Protocol for Human Stress Investigation in Manufacturing Contexts:
Its Application in the NO-STRESS Project by Apraiz et al. (2023).

This paper presents a human-centered protocol for measuring stress in manufacturing
environments. The protocol integrates physiological signals, performance metrics, and
individuals' perceptions of stress. To capture physiological responses, it employs
advanced techniques, including EEG (electroencephalogram), HRV (heart rate
variability), GSR (galvanic skin response), and EMG (electromyography). It also
assesses performance metrics such as task completion time, error rates, and
production rates. Additionally, subjective self-assessments are included to reflect
individual experiences of stress. Applied in both the automotive and plastic component
industries, this protocol offers a comprehensive understanding of stress and provides

valuable insights to inform interventions aimed at enhancing employee well-being.
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Result 70:

Multi-objective task allocation for collaborative robot systems with an Industry 5.0

human-centered perspective by Calzavara et al. (2023).

This paper proposes a multi-objective optimization model for task allocation in Industry
5.0. The model aims to minimize makespan while also reducing operator energy
expenditure and mental workload. With the growing use of collaborative robots
(cobots) alongside human operators, the goal is to optimize task distribution. The
methodology presents a novel approach for assessing mental workload and
introduces a constraint related to resource idleness. Implemented in a real-world

assembly scenario, the results indicate that this approach is effective.

Result 71:

Dual task scheduling strategy for personalized multi-objective optimization of cycle

time and fatigue in human-robot collaboration by Chand & Lu (2023).

This study presents a dual scheduling strategy designed to optimize task allocation in
Human-Robot Collaboration (HRC). The primary goals are to reduce both cycle time
and worker fatigue. The approach recognizes that workers in HRC environments have
varying capabilities and muscle strengths, leading to different levels of fatigue
response. The model integrates two objectives for minimizing fatigue: one aimed at
reducing the overall fatigue of the team and the other focusing on individual workers.
Balancing fatigue accumulation across the team and incorporating targeted rest and

recovery periods maintains production efficiency while prioritizing worker well-being.

Result 72:

Augmented Reality in a Lean Workplace at Smart Factories: A Case Study by Pereira
et al. (2023).

This study applies a methodology called RAES-Log to explore the integration of

Augmented Reality (AR) into material handling processes. The primary focus is on
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improving workers' ergonomic conditions and reducing risks, in alignment with Industry
5.0's human-centric approach. By minimizing human effort, preventing
Musculoskeletal Disorders (MSD), and enhancing workplace efficiency, the research
aims to create a safer and more effective working environment. Positive feedback from
workers indicated improvements in well-being, engagement, and motivation,
suggesting that augmented reality (AR) could greatly enhance productivity while

fostering safer and waste-free work environments.

Result 73:

Effects of Presence on Human Performance and Workload in Simulated VR-based
Telerobotics by Nenna et al. (2023).

This paper investigates the impact of the Sense of Presence (SoP) in Virtual Reality
(VR)-based telerobotics and examines its effects on industrial task performance and
operator workload. Using a simulated teleoperation task with an industrial robotic arm,
the study reveals that a higher SoP positively influences task performance, resulting
in greater efficiency. However, the SoP had little impact on the operators’ mental
workload, indicating that while presence may boost productivity, its connection to

workload needs further investigation.

Result 74:

Industry 5 and the Human in Human-Centric Manufacturing by Briken et al. (2023).

This systematic literature review revealed that engineering experts are increasingly
acknowledging workers as essential "end-users" in manufacturing innovations.
However, published practices frequently neglect workers' perspectives. The findings
suggest that Industry 5.0 has the potential to improve worker well-being and
productivity by aligning technological development with human-centered design and

practices.

96



Result 75:

Dynamic muscle fatigue assessment using s-EMG technology towards human-centric

human-robot collaboration by Chand et al. (2023).

The authors developed a theory to quantify localized muscular fatigue by considering
task load, muscle strength, and the number of repetitive operations. They used surface
electromyography (s-EMG) technology to monitor operator fatigue in environments
where humans collaborate with robots. This method allows for non-invasive, real-time
monitoring of fatigue during dynamic manufacturing tasks. The system can
continuously monitor operator fatigue using sensors like cameras, establishing a

framework for integrating fatigue monitoring into human-robot collaboration systems.

Result 76:

An experimental focus on learning effect and interaction quality in human—robot

collaboration by Gervasi et al. (2023).

This paper investigates how the learning process acquired through interaction with
robots affects user experience. It focuses on several factors, including robot speed,
task control, and proximity to the robot's workspace. Participants performed assembly
tasks in 12 different configurations and provided feedback about their experience,
alongside physiological measures such as skin conductance and heart rate variability.
The results indicated that the learning process significantly impacted user experience,

with participants’ perceptions of the robot configuration factors changing over time.

Result 77:

Passive Exoskeletons to Enhance Workforce Sustainability: Literature Review and
Future Research Agenda by Ashta et al. (2023).

This paper examines the use of passive exoskeletons in manufacturing and logistics

(M&L) systems. It categorizes exoskeleton performance based on different M&L tasks,

providing insights into their practical applications, efficiency, and cost-effectiveness.
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Additionally, it presents a maturity heat map to assess the development stage of
various exoskeleton models in both scientific and industrial contexts. The paper offers

recommendations for integrating exoskeletons into modern workplaces.

Result 78:

Manual assembly and Human—Robot Collaboration in repetitive assembly processes:
a structured comparison based on human-centered performances by Gervasi et al.
(2023).

This study investigates the impact of Human-Robot Collaboration (HRC) on user
experience and performance during a repetitive assembly task, with participants
working in both manual assembly and HRC settings across two 4-hour shifts. Data
were collected on affective states, body discomfort, workload, stress (measured via
heart rate variability and electrodermal activity), and the quality of processes and
products. The results revealed that HRC significantly reduced upper limb exertion,
demonstrating its physical ergonomic advantages. Additionally, HRC led to decreased
cognitive effort, lower stress levels, and fewer defects in the assembly process,
indicating that collaborative robots enhance not only physical ergonomics but also
cognitive performance and the overall quality of repetitive tasks.

Result 79:

Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and
Effort from the Laboratory to the Industrial Working Place: A Systematic Review by
Brambilla et al. (2023).

This study analyzes 288 articles out of 1375 identified in scientific databases to
evaluate current approaches for assessing fatigue, strain, and effort in the workplace,
specifically regarding upper limb performance. It compares laboratory-based
assessments with those conducted in real workplace settings. Laboratory studies
typically utilize instrumental methods to assess upper limb biomechanics, while
workplace evaluations often depend on questionnaires and rating scales. The findings
indicate that future research should integrate both instrumental and self-reported
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methods to develop multi-domain approaches. This would help expand the use of
instrumentation in real-world settings and support the implementation of more
structured trials. Such efforts are essential for translating laboratory findings into
practical solutions aimed at improving worker health, reducing fatigue, and enhancing

productivity.

Result 80:

How to Measure Stress in Smart and Intelligent Manufacturing Systems: A Systematic
Review by Blandino (2023).

This review examines the stress indicators affecting workers in smart and intelligent
manufacturing systems. The analysis outlines various objective measures of stress,
such as physical and physiological indicators, as well as subjective assessments,
including psychological factors. It also discusses the experimental protocols and the
environmental and demographic influences on stress. The study reveals that while
many stress indicators have been thoroughly examined, there is a lack of standardized
measurement techniques. Furthermore, it highlights the need to better consider
environmental and demographic variables that could enhance the accuracy of stress
assessments. It emphasizes the need for comprehensive, multi-faceted approaches
to stress evaluation in advanced manufacturing systems to enhance understanding

and mitigation of work-related stress.

Result 81:

Flexible job shop scheduling problem under Industry 5.0: A survey on human
reintegration, environmental consideration and resilience improvement by Destouet et
al. (2023).

The authors introduce the Sustainable Flexible Job Shop Scheduling Problem, which
integrates human and energy-efficiency considerations into the traditional flexible
scheduling framework. The review evaluates the literature on Flexible Job Shop
Scheduling Problems that include human and environmental factors, outlining future
research directions for improving scheduling models that consider these aspects.
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Result 82:

Biomechanical Modeling of Human—Robot Accident Scenarios: A Computational

Assessment for Heavy-Payload-Capacity Robots by Asad et al. (2023).

This study focuses on the potential for injuries in human-robot collaboration (HRC)
environments, addressing safety concerns particularly with medium- and low-payload
robots, while also extending the analysis to high-payload, high-speed robots within
Industry 5.0 contexts. This study employs quasi-static and dynamic simulations based
on ISO TS 15066 standards to evaluate injury thresholds in scenarios with
collaborative robots. The model of a human hand indicates that high-payload robots
should operate at a maximum speed of 80% of that used by low-payload robots to
minimize injury risk. The results highlight the significance of biomechanical analysis in
creating safer collaborative environments and encouraging the use of heavy-payload
robots.

Result 83:

Happy and Engaged Workforce in Industry 4.0: A New Concept of Digital Tool for HR
Based on Theoretical and Practical Trends by Salvadorinho & Teixeira (2023).

This study introduces BoosToRaise, a technological tool designed to improve and
monitor workforce engagement. By combining a systematic literature review with
benchmarking of existing applications, the tool was developed around key
engagement predictors, including employee roles, skills and career management,
supervisory support, and social relationships. It incorporates coaching and
gamification to promote a happier and more engaged workforce, ultimately enhancing

productivity, innovation, and competitiveness.

Result 84:

Fall Detection and Efficiency Enhancement via Wearable Technology by Enis Isik et
al. (2023).
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The paper discusses a technology called the smart glove, developed by the company
Thread In Motion. This innovative device aims to integrate human-centric technologies
to enhance worker capabilities instead of replacing human labor. The smart glove
combines conductive thread with advanced electronic and mechanical components,
all designed to optimize human physiology. A key project involves using Inertial
Measurement Unit (IMU) sensors along with machine learning algorithms to capture
and analyze human motion. A notable accomplishment is the ability to differentiate
between the fall of a glove and the fall of the user. This advancement has led to the
creation of a health emergency alarm system, commonly referred to as a "man-down"
feature. The primary goal of this system is to enhance workplace safety, particularly in
settings such as warehouses, by monitoring physical movements and minimizing

human error.

Result 85:

Human-Centered Design in Industry 5.0: Leveraging Technology for Maximum
Efficiency by Granata & Faccio (2023).

This paper presents a dynamic multi-objective task allocation system that utilizes real-
time physiological and performance data to evaluate the well-being of human
operators. By monitoring factors such as fatigue and stress, the system can
dynamically reallocate tasks to prevent overwork, ensuring a balance between
efficiency and human well-being. It emphasizes that to fully harness the potential of
collaborative robots, workspaces should be designed to optimize the contributions of

both humans and robots.

Result 86:

The Road to Industry 5.0: The Challenges of Human Fatigue Modeling by Zanoli et al.
(2023).

This paper presents an experimental analysis utilizing unsupervised learning on real-

world data to address the limitations of traditional fatigue assessment methods.

Fatigue can negatively impact cognitive and motor functions, leading to decreased
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productivity and increased safety risks. Although wearable devices offer a promising
solution for continuous and non-intrusive monitoring of fatigue, challenges such as
individual variability can reduce the effectiveness of traditional machine-learning
models. This highlights the need for more sophisticated, personalized models to
improve fatigue detection.

Result 87:

A Real-Time Double Flexible Job Shop Scheduling Problem under Industry 5.0 by Aribi
et al. (2023).

This paper examines how human factors like fatigue and energy consumption affect
production efficiency within the Industry 5.0 framework. It focuses on a real-time
double flexible job shop scheduling issue and proposes a dynamic strategy that utilizes
an improved genetic algorithm. The paper emphasizes the significance of
incorporating human well-being factors, such as energy management and fatigue
control, into the optimization of productivity. It presents a comprehensive experimental
analysis that demonstrates the effectiveness of the proposed solution in enhancing
both worker well-being and operational efficiency within a flexible and dynamic

production environment.

Result 88:

Research on the Visual Search Ability Decline Caused by Different Types of Noise by
Yin & Li (2023).

By analyzing the performance and physiological responses—such as reaction time,
task completion time, pupil diameter, and visual hotspots—of 30 participants exposed
to different types and levels of factory noise, this study investigates how such noise
affects workers' visual search abilities within the context of Industry 5.0. The findings
highlight the negative impact of noise on work efficiency and worker well-being,
underscoring the importance of addressing these factors in industrial environments.
Additionally, it finds that both composite and random noise, particularly for individuals

sensitive to noise, significantly impair visual search performance.
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Result 89:

A review of work-related stress detection, assessment, and analysis on-field by
Ciccarelli et al. (2023).

This paper addresses the growing issue of work-related stress by analyzing its effects
on both performance and health. It underscores the importance of accurately
measuring mental stress in workplace settings, especially as production processes
become more complex. While stress detection in controlled environments has been
extensively studied, there is a significant gap in research focusing on stress detection
in real-world work settings. The paper also highlights the need for innovative tools and
methods to identify stress in dynamic work environments. The findings emphasize the
necessity of adopting objective, multi-modal approaches to better understand
stressors and to effectively alleviate them.

Result 90:

Advanced workstations and collaborative robots: exploiting eye-tracking and cardiac
activity indices to unveil senior workers’ mental workload in assembly tasks by
Pluchino et al. (2023).

This study delves into how various human factors—such as task performance, mental
workload, and subjective well-being—interact with the use of collaborative robots
(cobots). It pays particular attention to dual-task scenarios that heighten cognitive
demands, especially in senior workers who may face hurdles due to declining work
capabilities. Results show that senior workers demonstrated a strong acceptance of
the cobot and positive experiences, even when faced with higher mental strain.
However, their performance was affected, resulting in increased errors and longer task
duration during dual-tasking situations. Eye-tracking and cardiac data partially
reflected the increased mental demand. The study highlights the need to understand
human factors to build trust, reduce fatigue, and improve performance in collaborative
manufacturing environments. The findings suggest that a holistic approach is vital for

integrating cobots, especially for senior workers in Industry 5.0.
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Result 91:

The NASA-TLX Approach To Understand Workers Workload In Human-Robot
Collaboration by Javernik et al. (2023).

This paper examines how the motion parameters of robots influence worker utilization
and workload. An experiment was conducted using the NASA-TLX questionnaire to
analyze two scenarios with different robot motion parameters tailored for each
participant, ensuring consistent conditions. The results demonstrated that individual
differences, such as workers' abilities and skills, significantly affected both workload
and utilization. This highlights the need for personalized approaches in Human-Robot
Collaboration (HRC) settings. The findings underscore the importance of developing
guidelines that consider these individual differences to enhance worker well-being and

improve productivity in collaborative environments.

Result 92:

Data-Driven Human Factors Enabled Digital Twin by Kolesnikov et al. (2023).

This paper presents the implementation of human factors-enabled digital twins to
improve human-centered production systems. The proposed system collects real-time
data related to human factors from various sources and employs a decision-making
algorithm to schedule tasks based on the worker's condition dynamically. A digital twin
model visualizes both the worker's status and the production system in real-time,
utilizing a Visual Components simulation environment. The results demonstrate that
production systems can adapt flexibly to changes in worker conditions, optimizing
workflows and task distribution with automated guided vehicles (AGVs) and
collaborative robots while also modifying workplace ergonomics to enhance worker
safety and performance.

Result 93:

From Human to Robot Interaction towards Human to Robot Communication in

Assembly Systems by Kambarov et al. (2023).
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This study explores the changing relationship between humans and robots in
assembly systems, with a particular focus on the transition from physical to cognitive
collaboration in Industry 5.0. It emphasizes how advanced communication
technologies allow humans to guide robots, thereby improving flexibility, productivity,
and worker well-being. The shift toward a human-centered environment, where skilled
operators engage in both physical and cognitive tasks alongside robots, results in a
safer, more efficient, and more fulfilling workplace. This form of collaboration is crucial
for enhancing the efficiency of assembly operations and improving the overall well-

being of human workers.

Result 94:

Abrupt Movements Assessment of Human Arms Based on Recurrent Neural Networks
for Interaction with Machines by Polito et al. (2023).

This study aims to identify sudden and unpredictable human movements during
collaborative human-machine tasks. It utilizes magneto-inertial measurement units
(MIMUs) placed on the forearms. The research employs deep learning, specifically a
recurrent neural network, to differentiate between normal gestures and abrupt
movements that occur during a pick-and-place task. The results show a high accuracy
of 99.25% in detecting these abrupt movements, which is essential for improving
worker safety and operational efficiency.

Result 95:

Perceptual Computing Based Framework for Assessing Organizational Performance
According to Industry 5.0 Paradigm by Tavrov et al. (2023).

This paper presents a framework for evaluating organizational performance that uses
perceptual computing to assess criteria related to a person's functional state, an
essential aspect of worker well-being. Unlike traditional performance metrics, which
can be subjective and imprecise, this framework allows regulators to express their

opinions using natural language. It also addresses the uncertainties involved in

105



measuring physiological, psychological, and physical characteristics, making it
adaptable for monitoring and improving human-centric industrial practices in Industry
5.0.

Result 96:

A novel quality map for monitoring human well-being and overall defectiveness in

product variants manufacturing by Verna et al. (2023).

This paper introduces a new method called the "Quality Map," which combines two
key indicators: production quality and worker well-being in the context of mass
customization within Industry 5.0. By evaluating the overall defects in product variants
alongside the stress responses of operators, this tool provides a comprehensive
approach to monitoring both manufacturing quality and worker well-being during the
production process. The study demonstrates the application of this method in a
collaborative human-robot assembly setting, highlighting its ability to help companies
balance the demands of high-quality, customized production with the necessity of

ensuring worker well-being.

Result 97:

Quantifying the contribution of single joint kinematics to the overall ergonomic
discomfort by Scalona et al. (2023).

The correlation between joint displacement during straightforward reaching tasks and
employee discomfort is examined, as it is essential for the prevention of work-related
musculoskeletal disorders (WMSDs) in industrial environments. This research utilizes
wearable inertial measurement units to capture comprehensive whole-body
kinematics. It contrasts established ergonomic assessment frameworks, including
RULA, REBA, and MMGA, with a quantitative index derived from joint kinematics
termed W1. The study underscores the necessity for subject-specific, quantitative
methodologies to accurately assess the risks associated with WMSDs.
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Result 98:

A Self-quantified Based Dashboard for Supporting Aged-Workforce in Industry 4.0 by
Abril-dimenez et al. (2023).

This paper explores how self-quantification tools can help tackle the challenges posed
by an aging workforce in Industry 5.0. It emphasizes the importance of adapting factory
workflows to meet the evolving needs of older workers. The focus is on empowering
these workers by helping them understand and develop their skills while promoting a

more flexible, inclusive, and well-being-oriented work environment.

Result 99:

Reactive Flexible Job Shop Problem with Stress Level Consideration by Yadegari et
al. (2023).

This study investigates the flexible job shop scheduling problem (FJSSP) within the
context of Industry 5.0, highlighting the significance of worker well-being, especially
stress levels, on scheduling performance. It examines how the need to reschedule due
to new job arrivals can increase worker stress. The study focuses on three types of
changes: shifting operations, altering machine assignments, and changing operation
sequences. To address this NP-Hard problem, a Genetic Algorithm (GA) is proposed
to minimize stress while ensuring that the schedules remain efficient and compact

despite the considerations for worker well-being.

Result 100:

Video-Based Fatigue Estimation for Human-Robot Task Allocation Optimisation by
Zheng et al. (2023).

This paper introduces a video-based method for estimating human fatigue in human-

robot collaboration systems, which overcomes the limitations of traditional wearable

sensors. The method employs the boundary-aware dual-stream MS-TCN algorithm to
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identify operation types and repetitions from video footage. The data is input into a
fatigue model to assess worker fatigue levels. This estimated fatigue is then integrated
into a human-robot task allocation optimization model, which aims to minimize cycle
time while ensuring that fatigue remains within acceptable limits. The results highlight
the effectiveness of both the fatigue estimation and the optimization methods.

Result 101:

The Role of Human Factors in Zero Defect Manufacturing: A Study of Training and

Workplace Culture by Psarommatis et al. (2023).

This review explores the importance of human factors in achieving Zero Defect
Manufacturing (ZDM) within the context of Industry 5.0. It highlights key elements that
contribute to the success of ZDM, including employee training, workplace culture,
effective communication, and the utilization of assistive tools. The paper highlights the
significance of human-centered approaches in enhancing manufacturing processes
and minimizing defects. By prioritizing worker engagement, training, and motivation,
industry professionals can improve zero-defect management outcomes. Moreover, the
authors advocate for additional research on the impact of HF across various industries
to develop more effective strategies for implementing ZDM.

Result 102:

Investigating Human Factors Integration into DT-Based Joint Production and

Maintenance Scheduling by Franciosi et al. (2023).

This study explores the integration of Digital Twin (DT) technology with Joint
Production and Maintenance Scheduling (JPMS) within the contexts of Industry 4.0
and 5.0. It specifically focuses on human factors that affect worker safety, well-being,
and performance. Through a systematic literature review, the study identifies gaps in
current research, particularly noting that aspects related to humans, such as workforce
scheduling, adjustments due to worker absences, and the impact of human factors on

stochastic parameters, are often overlooked. Based on these insights, the paper
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proposes a framework for incorporating human factors into digital twin-based Job
Performance Management Systems.

Result 103:

Dynamic Task Allocation for Collaborative Robot Systems by Granata et al. (2023).

The paper presents an online approach for dynamic, multi-objective task allocation
that allows for real-time adjustments to design human-centered workplaces integrating
collaborative robots. (cobots) into production systems. By allowing cobots to work
alongside human operators, the authors aim to achieve a balance between
productivity and worker well-being. This approach represents an early effort to
simultaneously assess human wellness and productivity in real-time, enabling
immediate adjustments during task performance and creating a more effective and

supportive work environment.

Result 104:

Human-centric production and logistics system design and management: transitioning
from Industry 4.0 to Industry 5.0 by Grosse et al. (2023).

This paper introduces a special issue of the International Journal of Production
Research, which features ten articles that examine the human-centric aspects of
Industry 5.0 and their implications for the design of production and logistics systems.
It highlights the necessity for a more systemic, data-driven, and ethically conscious
approach in future research. This approach should integrate human diversity and
factors affecting system operators, addressing the limitations of Industry 4.0.

Result 105:

The Human Factor and the Resilience of Manufacturing Processes: A Case Study of
Pharmaceutical Process Toward Industry 5.0 by Rubini et al. (2023).
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This paper presents a methodology for assessing the vulnerability of human factors in
production processes, with particular emphasis on the potential risks associated with
weaknesses in both cyber and physical systems. Through the execution of an
industrial case study, this research examines the interaction between human skills,
specifically Operator 5.0, and cyber systems, particularly in scenarios where system
performance is adversely affected. The study underscores the critical importance of
the synergy between human actions and cyber systems for the recovery of overall

system functionality capabilities.

Result 106:

Development of a new set of Heuristics for the evaluation of Human-Robot Interaction
in industrial settings: Heuristics Robots Experience (HEUROBOX) by Apraiz et al.
(2023).

This paper introduces the HEUROBOX tool, a new set of heuristics designed to
evaluate Human-Robot Interaction in industrial environments, with a focus on User
Experience, Technology Acceptance, and overall worker well-being. With the growing
collaboration between humans and robots, enhancing these interactions is essential
for achieving optimal performance and a satisfying user experience. The HEUROBOX
tool categorizes 84 basic heuristics and 228 advanced heuristics into four key areas:
Safety, Ergonomics, Functionality, and Interfaces. Additionally, it incorporates
important elements such as trust, perceived safety, inclusivity, and workload. The tool
was validated by experts using the System Usability Scale questionnaire and
prioritized through the Analytic Hierarchy Process. This provides a comprehensive

framework for evaluating human-robot systems in industrial settings.

Result 107:

Integration of Industry 5.0 requirements in digital twin-supported manufacturing
process selection: a framework by Papacharalampopoulos et al. (2023).

This paper introduces a framework that utilizes digital twin technology, essential
enabling technologies, and the concept of the micro factory to automate process
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selection and scheduling. A case study evaluates two manufacturing components
produced through Additive Manufacturing and laser welding under various scenarios.
The study concludes that integrating Industry 5.0 criteria not only enhances worker
well-being but also improves energy and time efficiency. This integration leads to
higher profit margins and more sustainable production processes.

Result 108:

Role of Cobots over Industrial Robots in Industry 5.0: A Review by Sahan et al. (2023).

This paper discusses the increasing role of collaborative robots in industrial
automation, emphasizing their advantages compared to traditional industrial robots.
Collaborative robots, or cobots, are specifically designed to work safely alongside
human operators. They provide flexibility, are easy to program, and are cost-effective,
making them particularly appealing to small and medium-sized businesses. Unlike
industrial robots, which excel in repetitive tasks, collaborative robots, or cobots, are
designed to operate in dynamic environments and manage more complex, cooperative
activities. The authors highlight several benefits of cobots, including enhanced safety,
greater adaptability, and reduced operational costs. The text also examines the current
state of cobot technology and its potential to revolutionize manufacturing by improving

efficiency, sustainability, and worker well-being.

Result 109:

A Framework for Human-aware Collaborative Robotics Systems Development by
Montini et al. (2023).

This paper introduces a framework aimed at enhancing human-aware collaborative
robotics systems. It enables the development of a collaborative screw-driving
application where both the operator and the robot actively perceive one another and
provide support. The objective is to boost task efficiency while prioritizing the well-
being of human workers. The authors acknowledge that, despite the promise of
collaborative robots working alongside humans, their actual use in manufacturing

settings has been limited.
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Result 110:

Performance optimisation of pick and transport robot in a picker to parts order picking
system: a human-centric approach by Vijayakumar & Sobhani (2023).

This study presents a mathematical model designed to optimize the performance of
Picker-to-Parts systems in e-commerce warehouses that utilize Pick and Transport
Robots (PTRs). The model takes into account not only productivity and quality but also
the well-being of order pickers, a consideration that is frequently overlooked in
previous research. By using data from a case company, this model provides valuable
insights for managerial decision-making, enabling the design of more efficient and
worker-friendly order-picking systems.

Result 111:

A Smart Manufacturing Ecosystem for Industry 5.0 using Cloud-based Collaborative
Learning at the Edge by Javed et al. (2023).

The authors present a value-driven manufacturing process automation ecosystem for
Industry 5.0, where each edge automation system operates on a local cloud and
utilizes a service-oriented architecture. This ecosystem integrates cloud-based
collaborative learning (CCL) across diverse fields, including building energy
management, logistics robot oversight, production line coordination, and support for
human workers. By fostering shared learning and collaboration, it aids the
development of efficient manufacturing workflows that align with Industry 5.0
principles. The workflow management system not only optimizes processes for
sustainability and cost-effectiveness but also prioritizes the well-being of human
workers. Overall, this adaptable ecosystem holds significant implications for the future

of various industrial applications.

Result 112:
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Industry 5.0 and Operations Management - the Importance of Human Factors by
Lindner & Reiner (2023).

This paper emphasizes the importance of human cognition in operations management
during the transition from Industry 4.0 to Industry 5.0. It argues that the increasing
reliance on digital technologies in manufacturing requires human-centered
approaches to leverage both human strengths and technology. The paper provides
examples of how technology can support or hinder decision-making and explores the
potential of human-Al interaction and explainable Al, particularly through

visualizations, to improve operational performance.

Result 113:

A Cost-Effective Thermal Imaging Safety Sensor for Industry 5.0 and Collaborative
Robotics by Barros et al. (2023).

This paper presents a cost-effective thermal imaging Safety Sensor specifically
designed for Industry 5.0 applications, aimed at enhancing human safety in
environments characterized by collaborative robots and flexible manufacturing
systems. The sensor utilizes a hybrid detection method to identify human presence
adjacent to active machinery, thereby automatically engaging safe mode settings to
prevent potential accidents. When evaluated under controlled conditions, the sensor
demonstrated a remarkable accuracy rate of 97%, all while maintaining minimal
computational costs. This positions the sensor as a practical solution for improving

safety without undermining efficiency on the factory floor.

Result 114:

Wearable Technology for Smart Manufacturing in Industry 5.0 by Nguyen et al. (2023).

This chapter examines the role of wearable Internet of Things (loT) devices,
highlighting their potential to enhance human tasks and address new industrial
demands. The integration of artificial intelligence and loT with wearable technologies

has led to significant innovations in areas such as manufacturing, healthcare, and
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sports. Despite facing challenges like security, privacy, and connectivity, the
implementation of federated learning algorithms has bolstered data security, improved
computing power, and increased accuracy. It also reviews the applications of wearable
loT devices in manufacturing, discusses their challenges, and presents case studies
that utilize machine learning, deep learning, and federated learning for fall and fatigue
classification.

Result 115:

A Comprehensive Study of Human Factors, Sensory Principles, and Commercial
Solutions for Future Human-Centered Working Operations in Industry 5.0 by Loizaga
et al. (2023).

This study investigates the measurement of human factors in the workplace, which
are essential for understanding workers' well-being. Human factors are the physical,
cognitive, and psychological conditions affecting worker efficiency, effectiveness, and
mental health. The paper identifies six key human factors: physical fatigue, attention,
mental workload, stress, trust, and emotional state. It examines how these factors
influence physiological responses, including brain activity, cardiovascular reactions,
muscular responses, electrodermal activity, and eye changes. Additionally, the study
reviews technologies for measuring these factors in workplace environments and

highlights available commercial solutions for such assessments.

Result 116:

Challenges in introducing automated guided vehicles in a production facility—
interactions between human, technology, and organisation by Thylén et al. (2023).

This paper uses the Human, Technology, and Organization (HTO) model to
investigate the complexities of integrating Automated Guided Vehicles (AGVs) into
production environments. It seeks to emphasize the often-overlooked human and
organizational aspects in discussions about Industry 4.0, which usually focus on
technological innovations. By addressing challenges such as developing new work
procedures, ensuring operator knowledge, and gaining employee acceptance, the
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study aims to provide insights for successfully incorporating AGVs into existing
workflows. The results highlight that overcoming these challenges is vital for
enhancing AGV performance and employee well-being, underscoring the need for a
balanced approach that aligns human factors with technological advancements in
Industry 5.0.

Result 117:

Human-Centered Design for Productivity and Safety in Collaborative Robots Cells: A
New Methodological Approach by Boschetti et al. (2023).

This research explores how collaborative robots (cobots) can merge the flexibility of
manual systems with the productivity of automation by working alongside human
operators in the context of Industry 5.0. It investigates control methodologies, such as
computer vision and augmented reality, to enhance productivity by minimizing idle
times and reducing the effort required from operators. Furthermore, it highlights the
significance of establishing a safe, human-centered workspace through real-time
monitoring, which ensures secure interactions between humans and robots. The paper
also covers the optimization of task allocation to achieve a balance between
productivity, operator well-being, mental workload, and energy expenditure.

Result 118:

Predictive maintenance for industry 5.0: behavioural inquiries from a work system

perspective by van Oudenhoven et al. (2023).

This paper examines the challenges of adopting Predictive Maintenance (PdM)
solutions, with a specific focus on how changes in the roles of decision-makers impact
their acceptance of these systems. Using the Smith-Carayon Work System model, the
study investigates the human, task, and organizational factors that are involved in
implementing PdM. Furthermore, it identifies four key factors that enhance the
adoption of PdM: trust in the system, control over the decision-making process,

availability of cognitive resources, and appropriate allocation of organizational
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decision-making responsibilities. The findings of this study provide valuable insights
aimed at improving the acceptance of PdM systems.

Result 119:

Multi-ResAtt: Multilevel Residual Network With Attention for Human Activity
Recognition Using Wearable Sensors by Al-Qaness et al. (2023).

The Human Activity Recognition (HAR) system utilizes a deep learning architecture
known as Multi-ResAtt. This architecture combines a multilevel residual network with
attention mechanisms to improve activity classification. The model processes data
from inertial measurement units and features a recurrent neural network, enabling it
to recognize complex human activities captured by wearable sensors effectively.
Furthermore, the model utilizes three public datasets (Opportunity, UniMiB-SHAR, and
PAMAP2). Multi-ResAtt surpasses existing human activity recognition models,
showcasing its potential for Industry 5.0 applications such as smart homes and e-
health by enhancing activity recognition accuracy and efficiency in human-centric
systems.

Result 120:

Future of industry 5.0 in society: human-centric solutions, challenges and
prospective research areas by Adel (2022).

This paper analyzes potential applications of Industry 5.0 with a focus on the
collaboration between humans and machines in the context of smart factories. With
the advent of Industry 5.0, there is a strong focus on delivering personalized products
and enhancing customer satisfaction through cutting-edge technologies. The paper
emphasizes key technological drivers of Industry 5.0, including big data analytics, the
Internet of Things (loT), collaborative robots, blockchain, digital twins, and the
emerging 6G systems. Finally, the study addresses the challenges and issues faced
by organizations involving robots and people on the assembly line.

Result 121:
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UX assessment strategy to identify potential stressful conditions for workers by
Khamaisi et al. (2022).

This paper presents a strategy for evaluating workers' User Experience (UX) within
the framework of Industry 5.0, with an emphasis on human-centric design. The study
utilizes noninvasive wearable devices to monitor human activities and physiological
parameters in conjunction with self-assessment questionnaires. The goal is to improve
workers' well-being and optimize industrial outcomes. A virtual reality (VR) simulation
of heavy-duty tasks at an oil and gas pipe manufacturing site is utilized to identify
potential physical and mental stressors that may affect operator performance.

Result 122:

Beyond playful learning — Serious games for the human-centric digital transformation

of production and a design process model by Brauner & Ziefle (2022).

This article explores the use of serious games as a human-centered approach to
facilitate digital transformation in manufacturing, specifically the transition from
Industry 4.0 to Industry 5.0. It discusses how serious games can help operators
manage complex and uncertain information while improving their responses to
dynamic production environments. The paper provides an adaptable process model
for designing serious games and tests this model through a serious game focused on
supply chain and quality management. Additionally, the study presents empirical
research indicating that serious games can serve as an effective learning environment
for evaluating the interfaces used by industrial workers. Ultimately, the paper
advocates for the use of serious games as a methodology to support the transition
from Industry 4.0 to Industry 5.0 in manufacturing settings.

Result 123:

Employee-centric innovation: Integrating participatory design and video-analysis to
foster the transition to Industry 5.0 by Orso et al. (2022).

117



This paper highlights the significance of involving workers in the early stages of design
to achieve the objectives of Industry 5.0. It presents a case study on the redesign of
technology in a validation laboratory, emphasizing a human-centric approach and the
well-being of workers within the context of Industry 5.0. By combining self-reported
data from employees with objective event-based data from video analysis, the study
provided a comprehensive understanding of work activities and the associated
challenges. The findings led to a set of redesign recommendations, which included
updating the application and introducing portable devices. A preliminary usability
evaluation of the revised application showed promising results, demonstrating the
effectiveness of this mixed-method approach.

Result 124:

Digital Twin as Industrial Robots Manipulation Validation Tool by Kuts et al. (2022).

This study investigates how Virtual Reality interfaces can be integrated into Digital
Twin (DT) systems for industrial applications, especially in the context of Industry 5.0,
where human operators are integrated into automated systems. This research
compares the performance of industrial robot control using traditional teach pendants
and virtual reality (VR)-based DT interfaces. It evaluates several factors, including task
completion time, stress levels, physical and mental effort, and user perceptions of both
real and virtual robots. The findings indicate that while virtual reality (VR) interfaces
may provide efficiency similar to traditional methods, they can also increase stress
levels among users. Furthermore, the study emphasizes the potential of VR DT
interfaces to enhance worker well-being and productivity. However, it recommends

further research to confirm their long-term effects in collaborative industrial systems.

Result 125:

Evaluating quality in human-robot interaction: A systematic search and classification
of performance and human-centered factors, measures and metrics towards an
industry 5.0 by Coronado et al. (2022).
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This article presents a literature review on measuring quality in Human-Robot
Interaction (HRI), specifically in manufacturing environments, within the context of
Industry 5.0. The review systematically analyzes 102 peer-reviewed articles and
provides a taxonomy of performance aspects and a Venn diagram illustrating common
human factors in HRI. The study clarifies often overlapping or confusing concepts in
HRI research and identifies seven emerging research topics that are essential for

advancing human-centered smart environments in Industry 5.0.

Result 126:

Design of Cognitive Assistance Systems in Manual Assembly Based on Quality

Function Deployment by Pokorni et al. (2022).

This research develops a method for designing cognitive assistance systems (CAS)
in the context of Industry 5.0, where human-machine collaboration is key. The
cognitive assistance system-QFD (CAS-QFD) combines business and worker
requirements to improve productivity, quality, and worker well-being. The CAS-QFD
methodology, which is based on Quality Function Deployment (QFD), consists of six
phases. It focuses on addressing workers' information needs, defining support
functions, and selecting appropriate interaction technologies. An industrial evaluation
has shown that this method is effective in systematically designing cognitive
assistance systems that meet comprehensive requirements across the worker,

workplace, production, and enterprise levels.

Result 127:

Balancing and scheduling assembly lines with human-robot collaboration tasks by

Nourmohammadi et al. (2022).

This study focuses on the assembly line balancing problem with human-robot
collaboration (ALBP-HRC) in advanced manufacturing, aiming to enhance productivity
and worker well-being within the framework of Industry 5.0. The research develops a
mixed-integer linear programming (MILP) model that incorporates the task times for
both humans and robots, the joint tasks they may perform, and the possibility of having
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multiple humans and robots working at the same stations. The model is solved using
a neighborhood-search simulated annealing (SA) algorithm that incorporates an
adaptive neighborhood selection mechanism. Computational results applied to real-
world scenarios in the automotive industry demonstrate that the proposed SA
algorithm produces promising solutions when compared to MILP and other
optimization techniques. This indicates significant productivity gains when humans
and robots collaborate at workstations.

Result 128:

KIDE4l: A Generic Semantics-Based Task-Oriented Dialogue System for Human-

Machine Interaction in Industry 5.0 by Aceta et al. (2022).

This paper presents KIDE4| (Knowledge-driven Dialogue framework for Industry), a
semantic-based task-oriented dialogue system designed for Industry 5.0. KIDE4I
enables workers to interact naturally with industrial systems, thereby reducing
cognitive load and enhancing system acceptance. KIDE4I is distinct from traditional
systems in that it can adapt to new scenarios without needing extensive training data.
This framework has been applied to four industrial use cases, with two of them
evaluated through user studies. The results indicate that users perceive the system as

accurate, efficient, flexible, and easy to use.

Result 129:

Ikigai Robotics: How Could Robots Satisfy Social Needs in a Professional Context? a
Positioning from Social Psychology for Inspiring the Design of the Future Robots by
Sartore et al. (2022).

This study presents the concept of "ikigai robotics," focusing on the mutually beneficial
relationship between worker well-being and performance in railway maintenance. By
combining aspects of both industrial and service robotics, the research highlights the
importance of the need for affiliation as a key factor that positively affects both well-
being and performance in this field. The findings emphasize that integrating robots
designed with human well-being in mind can enhance productivity. Additionally, the
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authors provide initial guidelines for designing "ikigai robots" and suggest that this
concept could have broader applications beyond just railway maintenance.

Result 130:

Roadmap to Implement Industry 5.0 and the Impact of This Approach on TQM by
Chaabi (2022).

This paper develops a roadmap for implementing the transition to Industry 5.0,
emphasizing a human-centric, sustainable, and resilient approach. It focuses on
prioritizing the health and safety of workers while outlining strategies for embracing
collaboration between workers and advanced technologies. This roadmap aims to
foster a positive integration of robotics into the workforce by addressing concerns
about job loss and enhancing productivity and efficiency. The roadmap integrates the
ADKAR change management model with Quality Circles to enhance worker
engagement and facilitate the transition to Industry 5.0. Furthermore, the paper
examines the potential effects of Industry 5.0 on Total Quality Management,
highlighting the importance of workers in promoting continuous improvement within

industrial environments.

Result 131:

Impact of Meditation on Quality of Life of Employees by Sagar et al. (2022).

This study investigates the effects of virtual meditation and mindfulness programs that
incorporate artificial intelligence (Al) on promoting organizational health and
enhancing mental well-being. The focus was on young engineers at PPS International
in Greater Noida, India, who participated in an eight-week meditation intervention. The
experimental group consisted of 30 males. The results showed significant
improvements in quality of life across various domains, including perception, physical
health, psychological health, social relationships, and environmental factors, when

compared to a control group. This research contributes to the limited literature on Al-
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integrated wellness programs and highlights their positive effects on employee
efficiency, emotional stability, and stress reduction.

Result 132:

An loT-based Wireless Sensor Network for Lighting Control Systems by Pierleoni et
al. (2022).

This study introduces a lighting control system aimed at enhancing worker well-being
in the context of Industry 5.0, with a focus on both physical and mental health. The
system utilizes a wireless sensor network, integrating with standard lighting controls
to extend their functionality. It also allows for remote monitoring through a web
platform. The proposed solution seeks to regulate workers' circadian rhythms by
modifying the lighting in the work environment, thereby enhancing their
psychophysical well-being. The system has been tested in industrial settings, with its
performance evaluated using metrics such as round-trip time, packet loss, and
goodput. The results demonstrate the system's versatility and scalability,

accommodating various node densities, network topologies, and sensor units.

Result 133:

Investigating exoskeletons applicability in manufacturing and logistics systems: state

of the art and future research directions by Ashta et al. (2022).

This paper explores the role of exoskeletons in the manufacturing and logistics
sectors, aiming to improve worker well-being and increase productivity by reducing the
risk of musculoskeletal disorders, particularly among an aging workforce. As modern
industries shift towards human-centered workplaces, exoskeletons are regarded as
promising solutions for enhancing ergonomics and safety. The study reviews various
exoskeleton designs and their applications, categorizing them by task type, including

simulated and real tasks, as well as by application field and evaluation methods.
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Additionally, it highlights the growing interest in using tools such as electromyography,
motion capture, and questionnaires to assess the effectiveness of these devices.

Result 134:

Promoting operator's wellbeing in Industry 5.0: detecting mental and physical fatigue
by Villani et al. (2022).

This paper investigates the detection of mental and physical fatigue in workers, in line
with the human-centric approach promoted by Industry 5.0. By utilizing wearable
devices to monitor operators' physiological conditions, specifically their cardiac
activity, the study aims to identify fatigue at an early stage. Early detection of fatigue
will enable the implementation of supportive strategies that enhance productivity and
maintain the well-being of workers.The experiment subjects participants to both mental
and physical fatigue, analyzing heart rate variability to distinguish between rest, mental
fatigue, physical fatigue, and combined fatigue. The results reveal significant
differences in time-domain metrics; however, identifying mental fatigue in conjunction
with physical fatigue remains a challenge. These findings offer valuable insights into
how fatigue detection can improve worker health and efficiency within Industry 5.0

environments.

Result 135:

Review of Human-Machine Interaction Towards Industry 5.0: Human-Centric Smart
Manufacturing by Yang et al. (2022).

This paper explores the role of Human-Machine Interaction (HMI) in Human-Centric
Smart Manufacturing (HCSM), a vital aspect of Industry 5.0. It presents a framework
for HMI focused on the interaction process and examines research in several key
areas: sensors and hardware, data processing, transmission mechanisms, and

interaction and collaboration. The paper analyzes current developments in each of
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these fields and investigates their potential applications in HCSM, where the emphasis
shifts from merely enhancing productivity to prioritizing worker well-being and
sustainability. The paper concludes by discussing the challenges and opportunities for

future HMI research in smart manufacturing systems.

Result 136:

Supporting Resilient Operator 5.0: An Augmented Softbot Approach by Zambiasi et
al. (2022).

This paper examines the "Resilient Operator 5.0" concept within Industry 5.0. The aim
is to enhance human adaptation, productivity, and mental health by creating intuitive,
human-centered work environments. It introduces a novel approach, called an
"augmented softbot", that combines softbots and augmented reality to improve
preventive maintenance processes. A software prototype was developed, and three
evaluation scenarios were analyzed within a specific company. The findings
demonstrate the potential of this technology to support operational resilience, showing
promising benefits for productivity and employee well-being.

Result 137:

An lloT Platform For Human-Aware Factory Digital Twins by Montini et al. (2022).

This paper discusses the need for new Digital Twins in Industry 5.0, which includes
human workers alongside traditional system representations. It introduces an
industrial loT-based platform that addresses the current limitations of Digital Twin
solutions, such as issues with reusability, scalability, and extensibility. The platform
enables the creation of customized data models for both production systems and
human workers, facilitating improved interaction modeling. Tested in a laboratory
environment, it provides a flexible and modular infrastructure for easy instantiation of

digital twins.

Result 138:
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Outlook on human-centric manufacturing towards Industry 5.0 by Lu et al. (2022).

This paper introduces a framework grounded in the Industrial Human Needs Pyramid,
which encompasses a comprehensive range of human needs—from safety to self-
actualization. The discussion highlights the progression of human-machine
relationships, moving from mere coexistence and cooperation to deeper levels of
compassion and coevolution. This evolution underscores the importance of
bidirectional empathy, proactive communication, and collaborative intelligence. The
authors suggest that future research should aim to create transparent and trustworthy
technologies to enhance the effectiveness of high-performance human-machine

teams.

Result 139:

Disruptive Technologies and Operations Management in the Industry 4.0 Era and
Beyond by Choi et al. (2022).

This study investigates disruptive technologies such as Al, robotics, blockchain, 3D
printing, 5G, loT, digital twins, and augmented reality, focusing on their impact on
operations management (OM) in the context of Industry 4.0. It delves into their current
applications while weighing the benefits against the potential drawbacks of these
innovations. The paper also addresses the possible conflicts that may arise between
human and machine interactions. Additionally, it introduces the idea of "sustainable
social welfare," which includes considerations for worker well-being and privacy,

emphasizing the crucial role of policymakers in maintaining a proper balance.

Result 140:

A preliminary experimental study on the workers’ workload assessment to design
industrial products and processes by Bruzini et al. (2021).

This paper discusses the role of human-centered design (HCD) in advancing Industry

5.0, focusing on improving worker well-being while maintaining sustainable production.
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It proposes an ergonomic assessment method to analyze workers' physical and
cognitive workload during tasks. The method utilizes wearable devices to monitor
physiological parameters and questionnaires for subjective assessments, enabling
companies to optimize product and process design to enhance worker well-being. The
method has been preliminarily tested in a real industrial case.

Result 141:

Device for monitoring the influence of environmental work conditions on human factor
by Onofrejova et al. (2021).

The paper emphasizes EU-OSHA's commitment to preventing work-related diseases,
following the EU Strategic Framework on Health and Safety at Work for 2014-2020. It
highlights the significant influence of the work environment on worker productivity,
health, and safety. The paper advocates for the implementation of miniaturized
technology to monitor working conditions, which can help build resilience against
disruptions like the COVID-19 crisis.

Result 142:

Neuro-competence approach for sustainable engineering by de Miranda et al. (2021).

This paper examines the Quintuple Helix innovation model and emphasizes the
importance of engineers developing the right competencies, especially through the
lens of connectivism learning theory. A bibliometric analysis was performed to pinpoint
the key factors influencing the design of neuro-competencies in engineering
education. The paper introduces the Neuro-Competence Engineering (NCE) model,
which combines neuro-competence, activity theory, and neuroscience to better align
engineering tasks with human capabilities, thereby promoting lifelong learning in a

sustainable manner.

Result 143:
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Accelerating Time to Competency in an Industry 5.0 World by Kedzierski & Willetts
(2021).

This paper emphasizes how companies like Shell create more personalized
experiences for their workers that align with business objectives and human welfare.
It discusses innovations such as mobile, on-demand training, collaborative learning
through Operator Training Simulators, Al-driven microlearning tailored to individual
worker profiles, and Virtual Reality platforms that provide training for decision-making
in real-time scenarios. Additionally, the paper highlights how tools like Microsoft Power
Apps enable workers to develop their own solutions, marking the emergence of mass
personalization in Industry 5.0. This approach aims to enhance both safety and

individual performance.

Result 144:

Next Generation Auto-ldentification and Traceability Technologies for Industry 5.0: A
Methodology and Practical Use Case for the Shipbuilding Industry by Fraga-Lamas et
al. (2021).

This paper examines the impact of Auto-ldentification (Auto-ID) technologies within
the framework of Industry 5.0. It underscores how these innovations can boost worker
productivity by facilitating transparent and human-centered traceability across the
entire value chain. By investigating the latest Auto-ID solutions and implementing a
selection methodology specifically for the shipbuilding sector, the paper highlights that
a thoughtful evaluation and selection of technologies—such as RFID tags—can
effectively address challenges posed by complex industrial settings. These
technologies not only enhance product tracking and identification but also support
production processes focused on the workers themselves.

Result 145:

Influence of emotional intelligence on the workforce for industry 5.0 by Chin (2021).

This study examines the role of emotional intelligence in improving workforce
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performance within the framework of Industry 5.0. Unlike Industry 4.0, which
emphasizes technological advancements, Industry 5.0 focuses on human intelligence
and emotional skills in the workplace. The research, which involved 110 executives,
reveals that emotional intelligence—especially the abilities to recognize emotions,
express them, and direct them cognitively—significantly influences workforce
performance. This underscores the importance of soft skills, such as emotional
intelligence, in equipping workers for the challenges and demands of Industry 5.0,

ultimately promoting both personal well-being and productivity.

Result 146:

The Entropic Complexity of Human Factor in Collaborative Technologies by Panagou
et al. (2021).

This paper examines the role of human operators in the evolving workplace
environments shaped by Industry 4.0 technologies, such as automation, collaborative
robots, and cyber-physical systems. It also looks ahead to Industry 5.0, which focuses
on human sustainability within these technological frameworks. The study highlights
the critical importance of human operators, especially considering the challenges
posed by an aging workforce. It suggests that these operators need to adapt to new
tasks, improve their skills, and prioritize safety and productivity in increasingly complex
environments. Furthermore, the research presents a model derived from the concept
of entropy in statistical mechanics to evaluate human capabilities and the potential for

errors.

Result 147:

Walrasian Equilibrium-Based Multiobjective Optimization for Task Allocation in Mobile
Crowdsourcing by Wang (2020).

This paper focuses on improving task allocation in mobile crowdsourcing systems. It
proposes a Markov and Collaborative Filtering-based Task Recommendation (MCTR)
model that considers worker similarities, trajectory prediction, dwell time, and trust
levels. This approach aims to encourage crowd workers to participate in tasks and
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provide accurate data. The research also investigates the optimal solution using
Walrasian equilibrium to maximize social welfare within mobile crowdsourcing
systems. Comparison experiments demonstrate that the proposed task allocation

model enhances the efficiency and adaptability of these systems.

Result 148:

Human Failures on Production Line as a Source of Risk of Non-conformity Occurrence
by Nagyova et al. (2020).

This paper explores how organizations implement automation to meet production
needs, enhance performance, minimize costs, and satisfy customer demands.
However, certain activities and processes cannot be fully automated and require a
human-machine interface. These processes may introduce risks that are not easily
predictable, and if identified too late, they could lead to inconsistent product quality.
Such inconsistency may ultimately result in a loss of competitiveness and a decline in
company profits. Additionally, the paper emphasizes risk analysis related to non-
conformity arising from the manual placement of components in automotive production
processes. The causes of non-conformity were identified using quality tools, and
system solutions for their elimination were proposed. In alignment with the Industry
5.0 strategy, these solutions include investing in operator training programs to address
the significant impact of the human factor within the human-machine system.

Result 149:

An automatic procedure based on virtual ergonomic analysis to promote human-

centric manufacturing by Grandi et al. (2019).

This paper highlights the importance of integrating human factors into manufacturing
processes to improve worker well-being, prevent ilinesses, reduce errors, and mitigate
excessive workloads. It outlines a systematic approach for the automatic extraction of
data from virtual analyses performed by digital manufacturing tools to evaluate
manufacturing ergonomics. The research establishes a set of indicators specifically
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designed for assessing manual operations, with a particular focus on assembly tasks.
Additionally, it presents a methodology for the automatic extraction of this data. An
application developed in Visual Basic generates task lists and corresponding
ergonomic assessments. This procedure was applied in a case study that examined
the manual assembly of tractor cabin supports. The results led to a redesign that
enhanced ergonomics by decreasing the EAWS (Ergonomic Assessment Worksheet
Score). This approach allows for an early evaluation of worker well-being during the

design phase, promoting the development of human-centric manufacturing processes.

3.7 Feedback from Experts

Following the CTl methodology presented in Chapter 2, experts in Industry 5.0 and
Competitive Technology Intelligence were contacted via email during the process.
The experts provided feedback to help construct the search query.

3.8 Validation and Delivery of Final Results

The expert’s feedback contributed to the final validation in parallel to the previous
step. Vital aspects were validated, such as selecting the database, choosing
keywords, formulating the final query, categorizing the results, and accurately
analyzing the data. The publications utilized in the theoretical framework for
Competitive Technology Intelligence, well-being, and Industry 5.0 provided additional

reassurance for this study's findings.

3.9 Decision Making

The findings in this thesis provide a strong basis for informed decisions for research
and development (R&D), and innovation.
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Chapter 4: Discussion
4.1 Introduction

In the subsequent section, the 149 papers sourced from Chapter 3 will be detailed.
Each human factor includes a brief description of its characteristics, its impact on
workers' well-being and productivity, and the approaches discussed in this research.
Lastly, the trends in technology and research related to how workers’ well-being
influences productivity within the context of Industry 5.0 are presented.

4.2 Human Factors

The papers were categorized into six key human factors for assessing well-being and
productivity in Industry 5.0: physical fatigue, attention, cognitive workload, stress, trust,

and emotional assessment.

4.2.1 Physical Fatigue

Physical fatigue occurs when the body decreases its physical capabilities due to
exertion (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). It can cause
tiredness and mental, cardiovascular, or muscular fatigue that can affect any body
part (Mahdavi, Dianat, Heidarimoghadam, Khotanlou, & Faradmal, 2020).

Mahdavi et al. (2020) mention that fatigue can have both short-term and long-term
consequences. In the short term, it may result in decreased strength, localized muscle
fatigue, and impaired motor control, while long-term effects can include
musculoskeletal disorders (MSDs) (Mahdavi, Dianat, Heidarimoghadam, Khotanlou,
& Faradmal, 2020). The impact of physical fatigue, whether immediate or prolonged,
can significantly affect a worker's productivity and overall well-being. MSDs are a
recurring health issue among operators, often arising from the physical demands of
their work (Pistolesi, Baldassini, & Lazzerini, 2024). Moreover, MSDs substantially
impact employee well-being and overall task performance (Ling, et al., 2024).

Therefore, organizations that take a proactive approach to addressing ergonomic
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concerns can enhance productivity and performance while fostering the well-being of
their employees.

Various approaches have been explored to address physical fatigue in the workplace.
This research categorizes the information into ergonomic interventions, advanced
monitoring technologies, and dynamic task allocation systems to enhance
understanding.

4.2.1.1 Ergonomic Interventions

Grandi et al. (2019) propose Human Modeling Software that simulates worker
movements and postures in a virtual environment. This software enables ergonomic
adjustments to workstation layouts, task sequences, or tools before physical
implementation. They also present the EAWS (Ergonomic Assessment Worksheet),
a tool for calculating the ergonomic risks associated with specific tasks. The EAWS

tool is expected to help redesign tasks to improve worker comfort and safety.

Ghorbani et al. (2024) developed a fuzzy fatigue model by combining Potvin’s fatigue
model with the Fuzzy Inference System (FIS). Based on rules derived from ergonomic
specialists' insights, this model provides actionable insights for managing ergonomic
risks. The study assessed three scenarios with different thresholds for maximum
allowable fatigue levels, referred to as Fmax. The scenarios included Fmax values of
1, 0.75, and 0.5. The findings revealed a reduction in fatigue of 30%, 52%, and 81%,
respectively, for each scenario. Moreover, it helps in work cell planning by

categorizing fatigue levels, enabling designs that minimize potential fatigue.

Falerni et al. (2024) introduce a novel approach called AmPL-RULA. This approach
combines the Active Multi-Preference Learning (AmPL) algorithm with the Rapid
Upper Limb Assessment (RULA). The AmPL algorithm offers qualitative feedback on
user preferences, while RULA aids in assessing the ergonomic aspects of a task. The
authors state that postural comfort and ergonomics are different; ergonomics
emphasizes postures that prevent health issues, while comfort encompasses various

132



factors, including cognitive, physiological, and environmental. This research
considers both user preferences and ergonomic principles.

4.2.1.2 Advanced Monitoring Technologies

In 2023, Chand et al. (2023) developed a personalized muscle fatigue profile using
Surface Electromyography (s-EMG) technology to measure muscle strength and
fatigue changes during dynamic manufacturing tasks in human-centric human-robot
collaboration (HHRC) environments. The aim was to improve real-time monitoring of
muscle performance through a noninvasive method. The research was conducted in
three case scenarios: static hold, vertical handling, and pick and place operations.
The results showed that static hold and pick and place operations present higher
muscle fatigue with 25-50% relative task load. Furthermore, individuals with varying
muscle strengths exhibited similar fatigue profiles under the same task load. This
research, which effectively tracks muscle fatigue during dynamic operations, has

potential applications for dynamic task allocation.

Khamaisi et al. (2024) used a wearable motion capture suit to measure body postures
in real-time during a standardized lifting task. The gathered data was utilized in the
TACOs (Time-Based Assessment Computerized Strategy) methodology, which the
authors proposed. This methodology emphasizes analyzing both the duration and
severity of postures adopted by the spine and lower limbs during tasks.

Pistolesi et al. (2024 ) propose a privacy-preserving posture-tracking system that uses
a LiDAR (Laser Imaging Detection and Ranging) sensor and a smartwatch to monitor
workers' postures. The system is designed to comprehensively assess the alignment
of the trunk, shoulders, arms, and legs. It monitors the worker's posture with an
impressive 98% accuracy, offering an alert mechanism that notifies users when their
posture deviates from the ISO 11226 standard. Moreover, it safeguards privacy, as
the system is designed to prevent the retention of sensitive information.
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4.2.1.3 Task Allocation Systems

Dynamic task allocation involves the real-time and adaptable assignment of tasks
based on changing conditions in a collaborative workspace between humans and
robots (Calzavara, et al., 2024). This system can monitor factors such as worker
fatigue, performance metrics, and robot availability (Calzavara, et al., 2024). On the
other hand, in static allocation systems, tasks are pre-assigned at the beginning of
the shift and do not change under real-time conditions, which often fails to support
operator well-being and environmental variability (Granata, Faccio, & Boschetti,
Industry 5.0: prioritizing human comfort and productivity through collaborative robots
and dynamic task allocation, 2024).

Both Calzavara et al. (2023) and Boschetti et al. (2023) propose a multi-objective task
allocation model to minimize the makespan, energy expenditure, and mental
workload, using a static task allocation method as input (Boschetti et al., 2023). The
model offers a range of options based on the makespan, energy expenditure, or
mental workload. According to the authors, this method effectively balances
productivity and well-being by optimizing task distribution between humans and
collaborative robots. Furthermore, Calzavara et al. (2023) introduce a saturation
constraint that allocates more tasks to the cobot, aiming to minimize the operator’'s
effort, even though it increases the makespan.

Calzavara et al. (2023) describe the makespan as “the total time required to complete
all tasks that must be performed®, the energy expenditure as “the energy required to
both maintain the posture and to perform the job, which is measured by the duration,
level, and repetitiveness of a physical job”, and mental workload as “the combination
of all elements, both cognitive and emotional, that are related to the complexity of the
tasks, limited resources, and feelings during work”, under this context mental
workload is estimated through the CLAM (Cognitive Load Assessment for

Manufacturing) index.
Granata et al. (2024) and Calzavara et al. (2024) propose a dynamic task allocation
system by monitoring real-time data on human variability. Unlike the multi-objective

method, this method allows the reassignment of tasks between humans and cobots
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under unexpected conditions such as the operator’s energy and stress levels. In both
studies, only makespan and energy expenditure were considered. The results
showed that this method can avoid overworking the operator, potentially improving

well-being and productivity and preventing operator fatigue and the risk of stress.

In conclusion, multi-objective task allocation presents an effective methodology for
optimizing task assignments through the careful balancing of various objectives within
a static framework. Conversely, dynamic task allocations facilitate adaptability and
real-time adjustments, enabling them to respond effectively to immediate fluctuations

and alterations in the task environment.

Furthermore, while static systems are valuable for predetermined, stable
environments, dynamic task allocation systems are essential for enhancing
productivity and well-being. A human-centric task allocation system must be adaptive
and prioritize both operational efficiency and human factors. Nevertheless, it's
important to recognize that while implementing assistive technologies can support
operators, these solutions may also present drawbacks, such as increased fatigue,
workload, or injury risk (Lucchese & Mummolo, 2024). Therefore, it is essential to
consider a range of different strategies for effectively assessing fatigue in the
workplace, as this can significantly contribute to overall employee well-being and

productivity.

4.2.2 Attention

Chun et al. (2011) define attention as the brain's capacity to focus on and process
specific external or internal stimuli. According to them, this ability is essential due to
the brain's limited capacity to handle information simultaneously. Under this context,
attention serves as a mechanism that allows for the selection and concentration of
information relevant to ongoing tasks. Forster and Lavie (2008) explain that a
distraction occurs when attention shifts from one task to another due to external or
internal stimuli that are unrelated to the task. On the contrary, concentration is the
state of sustained attention on a specific task that requires both effort and cognitive
resources (Chun, Golomb, & Turk-Browne, 2011).

135



This mechanism becomes especially important in industrial settings. Distractions or
the operator's loss of attention can lead to significant safety risks (Simeone, Grant,
Ye, & Caggiano, 2023), increased errors, and lower performance (Tortora, Pasquale,
Franciosi, Miranda, & lannonne, 2021). Therefore, continuously monitoring the
operator’s attention (Simeone, Grant, Ye, & Caggiano, 2023) and addressing human
factors like attention and focus (Tortora, Pasquale, Franciosi, Miranda, & lannonne,
2021) are critical to maintaining a secure workplace environment for the operator,

minimizing errors, and increasing productivity.

Various approaches have explored the impact of attention in the workplace. This
research categorizes the information into concentration and distractions to enhance

understanding.

4.2.2.1 Concentration

Rykala (2023) developed an algorithm for analyzing brain electrical activity through
electroencephalography (EEG) signals. The aim of this evaluation was to assess the
concentration levels of operators in real-time, especially during periods of extended
working hours or in elevated temperature conditions while interacting with heavy
machinery, such as unmanned ground vehicles (UGVs). The author employed EEG-
based biofeedback to monitor operators' concentration levels and provide feedback
for increased awareness. The feedback was provided when concentration appeared
to drop, and it could be delivered directly through notifications or indirectly by
reviewing focus trends. Results accurately reflected the participants' conditions,
indicating that the methodology was correct. This solution may provide an overview

of machine operator concentration levels.

In 2023, Helm et al. (2023) examined the source of errors in a warehouse using
Intelligent Video Analysis (IVA). The IVA is a tool for recording, tracking, and
analyzing warehouse operations. Cameras were strategically installed, synchronized
with the Warehouse Management System (WMS), and analyzed by human operators.
This tool was implemented in six case companies identified as A, B, C, D, E, and F.
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The results indicated that confusion, lack of experience, distraction, stress, and
carelessness are the main causes of errors. The authors also noted that the presence
of cameras appeared to reduce errors, suggesting that operators tend to concentrate
more when they feel they are being monitored. This conclusion was made after
observing an 80% decrease in errors at Company F when using the IVA tool.

4.2.2.2 Distraction

Yin & Li (2023), Polito et al. (2023), and Al-qaness et al. (2023) examine how external
stimuli affect human performance through attention. Although they use different
experimental methods, both studies aim to evaluate the impact of distractions during

task execution.

Yin & Li (2023) explore how auditory noise affects attention in participants performing
visual tasks using fan noise alone, fan with human noise, and fan with striking noises.
Results indicated that under noisy conditions, participants, particularly those sensitive
to noise, experienced longer task completion times and increased pupil dilation, which
serves as an indicator of stress. This conclusion was reached after observing that
individuals sensitive to noise took longer to complete tasks, with their time increasing
from 1.74 seconds in a quiet environment to 2.77 seconds in the presence of fan
noise combined with human sounds. Similarly, for individuals who are less sensitive
to noise, their task completion time increased from 2.20 seconds in a quiet setting to

2.84 seconds when exposed to noise from a fan along with striking sounds.

Polito et al. (2023) examine how distractions, stress, or fatigue can lead to sudden
movements during Human-Machine Interactions (HMI), potentially compromising
safety. The authors propose wearable Magneto-Inertial Measurement Units (MIMUSs)
to monitor precise movement data. These MIMUs integrate accelerometers,
gyroscopes, and magnetometers. The findings indicated a 99.25% accuracy rate with
a precision of 85.23%, highlighting an effective method for detecting abrupt

movements and enhancing operator safety in industrial settings.
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Similarly to Polito et al. (2023), Al-ganess et al. (2023) focus on the importance of
human activity recognition. The authors develop a model called Multi-ResAtt
(multilevel residual network with attention) that utilizes data from wearable sensors,
specifically Inertial Measurement Units (IMUs). The model processes and learns from
IMU data to recognize complex human activities. The results showed that the Multi-

ResAtt model can reach up to 84.99% accuracy.

Distractions that negatively impact attention, as demonstrated by Yin & Li (2023), can
cause sudden movements during Human-Machine Interaction (HMI), jeopardizing the
operator's safety. For this reason, Polito et al. (2023) and Al-Qaness et al. (2023)
emphasize the importance of identifying human activities, such as abrupt movements

in the workplace.

These proposals emphasize the need for continuous monitoring of both attention and
concentration to ensure safety, well-being, and optimal performance, particularly in

environments where humans and machines work closely together.

4.2.3 Cognitive Workload

Cognitive workload refers to the balance between the resources the operator requires
and those required by the task (See Figure 15) (Wickens, Gordon, & Liu, 2004).
Cognitive workload is key to preserving a healthy and high-performing working
environment (Ma, Monfared, Grant, & Goh, 2024).
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Figure 15. Graphical Representation of Cognitive Workload Balance.
(Own elaboration, 2024)

An imbalance between these two resources could impact the operator's well-being
and performance. For example, consider the amount of time a task requires
compared to the time available to complete it. If the time needed for a task exceeds
the time available for the operator to finish it, this results in an overload (Wickens,
Gordon, & Liu, 2004). Equally, if the time needed for a task is low and the time
available is too high, it can result in an underload. Although this example
oversimplifies the complexities of the concept, it still serves as a useful starting point,
given that other factors such as attention, information processing capacity, memory,
and decision-making (Ma, Monfared, Grant, & Goh, 2024) influence it.

Even though a newly implemented system in a work environment shows good
performance, task performance can be reduced, and errors can increase if the
operator experiences an excessive workload while using it (Wickens, Gordon, & Liu,
2004). This reinforces the importance of constantly monitoring the operator’'s
cognitive workload to maintain their well-being and performance.

Various approaches have been explored to address cognitive workload in the

workplace. This research categorizes the information into subjective, objective and a
combination of both to enhance understanding.
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4.2.3.1 Subjective

Javernik et al. (2023) used the NASA-TLX questionnaire to take a completely
subjective approach. The authors found that Human-robot collaboration (HRC)
significantly influenced worker workload. The study involved two case scenarios: 60%
and 100% worker utilization, with the difference being the time given by the robot.
The results showed a 34.7% increment in perceived workload when worker utilization
increased from 60% to 100%. Additionally, the highest workload reported was in the
TD (temporal demand) dimension of the questionnaire, which relates to the time
pressure experienced by respondents. They recommend personalized guidelines for
HRC workplaces that consider the operator’s abilities, skills, and personalities. This
focus is aligned with Gualtieri et al. (2024), emphasizing guidelines for non-experts in
Human-Robot Collaborative (HRC) assembly tasks to create effective, human-
centered HRC environments.

4.2.3.2 Objective

Cardiac activity and visual scanning are consistent and reliable parameters for
measuring cognitive workload (Wickens, Gordon, & Liu, 2004). Cardiac activity is,
however, the physiological metric most commonly utilized (Antonaci, et al., 2024).

The authors Pluchino et al. (2023) and Ma et al. (2024) follow these parameters for
their research. Pluchino et al. (2023) used eye-tracking and cardiac activity alongside
the NASA-TLX questionnaire in an assembly task experiment with senior workers
and a cobot. The authors evaluated mental workload under single-task, where only
one assembly task was evaluated, and dual-task conditions, where two assembly
tasks were required simultaneously. The results indicate that participants
experienced a higher level of mental workload during the dual-task condition, with a
median score of 100 and an average of 5.64 errors. In contrast, during the single-task
condition, the median score was 45, and the average number of errors was just 0.81.
Additionally, Senior operators exhibited a greater willingness to work with cobots,

even though their cognitive workload and error rates increased.
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Ma et al. (2024 ) conducted an experiment involving the assembly of a Wankel Engine,
utilizing pupillometry and heart rate variability (HRV) measurements. The tasks were
designed with varying complexities categorized as rest, low, medium, and high, and
included both experts and non-experts. The results indicated that cognitive load
increased with task complexity, accompanied by a decrease in heart rate variability
under higher cognitive workloads. Furthermore, the authors discovered that experts
experienced lower cognitive workloads compared to non-expert participants despite

the task complexity.

Both studies provide valuable strategies for designing and optimizing a workplace

environment that considers operators' cognitive workload.

4.2.3.3 Combined

Zakeri et al. (2023) and Caiazzo et al. (2023) evaluated cognitive workload using the
NASA-TLX questionnaire and electroencephalography (EEG). However, Zakeri et al.
(2023) also integrated functional near-infrared spectroscopy (fNIRS) and auditory
signals, referred to by the authors as beeps, to evaluate attention and reaction time.
Both studies found reduced cognitive workload and enhanced performance when the
participants worked with cobots.

Zakeri et al. (2023) conducted an experiment involving a sorting task in which a
collaborative robot (cobot) would present participants with a box. The participants had
to decide where to place the box. Additionally, an extra task was introduced:
participants would hear a beep and were required to press a foot pedal in response.
The authors found that NASA-TLX scores were higher in conditions of high
complexity compared to those of low complexity, indicating an increased mental
workload. Reaction times also increased under high-stress conditions, especially
when both task complexity and cobot speed were elevated, which pointed to a rise in
cognitive workload and stress levels. Furthermore, in high-complexity scenarios, a
greater number of beeps were missed, demonstrating how cognitive workload affects
task performance.
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Caiazzo et al. (2023) conducted an assembly task experiment in a standard scenario,
where no robotic assistance was provided, and collaborative scenarios, with the same
assembly task but with the assistance of a cobot. The authors observed a higher
number of components correctly assembled in the collaborative scenario, resulting in
higher productivity and a significant reduction in mental workload, as evaluated by
EEG data and NASA-TLX scores.

Nenna et al. (2023) studied the connection between cognitive workload, performance,
and the Sense of Presence (SoP) in a VR-based telerobotic environment. Participants
who reported a higher SoP completed the pick-and-place tasks faster than
participants who reported a lower SoP. During the "pick" operation, the average time
was 2.37 seconds for the high SoP group, while the low SoP group took 3.05 seconds.
Similarly, for the "place" operation, the high SoP group completed it in 1.86 seconds,
compared to 2.51 seconds for the low SoP group. The investigation concluded that a
higher Sense of Presence (SoP) positively affects task performance and has a ‘little
to no impact’ on cognitive workload. The results were obtained by administering the
NASA-TLX for workload evaluation and the MEX-SPQ for SoP evaluation
questionnaires to participants. Additionally, pupil size variation was measured using
an eye headset integrated with an eye-tracking system.

In summary, the subjective approach provides valuable insights into cognitive
workload from the operator's perspective, whereas the objective approach employs
data obtained through instrumentation. While the objective method is generally more
suited for tasks requiring precise measurements, the subjective method effectively
captures the operator’s experiences and perceived workload. Therefore, integrating
both approaches may be beneficial for achieving a more comprehensive evaluation.

4.2.4 Stress

The authors Loizaga et al. (2023) define stress as “a condition in which
unpredictability (absence of anticipatory response) and uncontrollability (delayed
recovery of the response and presence of a typical neuroendocrine profile) are
involved”. In other words, stress is a reaction to feeling unprepared and lacking
control over events. Additionally, the author Blandino (2023) defines the work-related
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phenomenon originating from stress as “a phenomenon that occurs when the work

demands exceed the worker’s capacity to perform them”.

This phenomenon is associated with several health issues, including an increased
risk of musculoskeletal symptoms, mental health challenges like depression (Kim, et
al., 2023) as well as decreased productivity at work (Chung, et al., 2023); (Blandino,
2023); (Tran, et al., 2023). Therefore, organizations that take a proactive approach to
addressing work-related stress concerns can enhance productivity and performance
while fostering the well-being of their employees.

Given stress's significant impact on well-being and productivity, numerous authors
have conducted research to address this issue. Blandino (2023) and Ciccarelli et al.
(2023) conducted a literature review on stress indicators, measurement
methodologies, and the contextual factors influencing stress in smart and intelligent
manufacturing systems. The measurement methods identified by the authors are

categorized into three groups (See Figure 16):

1. Physical: The physical evaluation includes indicators related to both posture and
behavior. Posture is assessed using the Ovako Working Posture Analysis System
(OWAS), the Rapid Entire Body Assessment (REBA), and the Rapid Upper Limb
Assessment (RULA). Behavior indicators are determined by analyzing body

language and indicators of hyperactivity.

2. Physiological: The physiological evaluation includes various measures such as
cardiac activity, electrodermal responses, respiratory rates, and indicators of brain
activity. Key metrics used in this evaluation are Heart Rate Variability (HRV) and
heart rate (HR) to assess cardiac function, along with Electrodermal Activity (EDA),

which is measured through skin conductance to reflect nervous system responses.
3. Psychological: The psychological assessment includes subjective measures,

such as self-assessment questionnaires like the State-Trait Anxiety Inventory and
the Perceived Stress Scale (PSS).
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Rapid Entire Body Electrodermal Activity Perceived Stress Scale
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Heart Rate Variability

Rapid Upper Limb
Assessment

Figure 16. Stress Evaluation Elements.
(Own elaboration, 2024)

Ciccarelli et al. (2023) expand on these elements by exploring multimodal approaches
to stress detection through integrating multiple methodologies and data types to

increase accuracy.

Studies discuss the influence of contextual and demographic factors on stress. For
instance, Blandino (2023) and Gervasi et al. (2023) note how factors such as age,
gender, experience level, and familiarity with collaborative robots impact stress
perception and physiological responses. Similarly, Ciccarelli et al. (2023) emphasize
that factors in the environment, such as time of day, temperature, and weather, can

affect stress levels in real-world environments.
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Furthermore, Ciccarelli et al. (2023) note that examining real-world environments can
be particularly challenging due to unpredictable environmental factors. Similarly, Tran
et al. (2023) conclude that assessing stress in real-world settings presents greater
difficulties. They explain that this challenge arises because factors such as the work
context, as well as individual physical and mental health, are often not considered in

experiments conducted in real-world environments.

This research categorizes the information into a real-world environment and

laboratory-controlled environment to enhance understanding.

4.2.4.1 Real-World Environment

In 2023, Apraiz et al. (2023) proposed a protocol for measuring stress in a
manufacturing environment in the “NO-STRESS Project”. The protocol consists of
three phases that integrate physiological signals, performance indicators, as well as
the operator’s perception of stress. Techniques such as self-assessment reports,
electroencephalography (EEG), heart rate variability (HRV), galvanic skin response
(GSR), and electromyography (EMG) are used to gather comprehensive data on
stress levels. Additionally, performance indicators like task execution time, error
rates, and production rates are evaluated. This protocol has proven effective for
assessing stress levels in operators within manufacturing environments. As Blandino
(2023), Apraiz et al. (2023) highlight the importance of standardizing and refining

protocols to ensure measurement consistency across different industries.

Furthermore, Verna et al. (2023) introduce a “Quality Map” as a proactive tool for
monitoring product defectiveness and operator stress. The map enables the
identification of critical points in production and facilitates real-time quality
adjustments. The authors found these critical points often occur at stages of high task
complexity, repetitive strain, or limited resources. This approach supports maintaining
high standards while actively promoting worker health. As task complexity increases,

worker stress levels also tend to rise.
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4.2.4.2 L aboratory-Controlled Environment

Aceta et al. (2022) introduced the KIDE4| (Knowledge-driven Dialogue framework for
Industry) system designed to enhance natural language communication. The system
allows workers to interact with machines through voice commands, reducing the need
to memorize specific phrases. The authors conducted two case studies. The first
involved a guide robot designed to provide navigation and information in response to
user voice commands. The second involved a bin-picking robot that was programmed
to sort items based on user specifications given through voice commands. The results
indicated high completion rates for both use cases: 84% for the guide robot and 82%
for the bin-picking robot. This suggests that the system effectively supported task
execution in most instances. Additionally, the response times were approximately
1.25 seconds for the guide robot and 0.75 seconds for the picking robot, contributing
to increased productivity through a faster workflow. The authors highlight the
importance of human-machine interactions in the context of Industry 5.0, noting that
these interactions can either reduce or increase stress, depending on how intuitive

the communication between workers and machines is.

4.2.5 Trust

Interactions between humans and robots are intended to reduce the operator's
workload (Kambarov, Inoyatkhodjaev, Kunz, Brossog, & Franke, 2023). Building trust
in interactions between operators and robots is essential for cultivating a secure and
comfortable work environment alongside robots, which in turn enhances efficiency
and productivity (Montini, et al., 2023). Additionally, trust is the second most
frequently evaluated aspect in collaborative robotics environments (Coronado, et al.,
2022).

Trust in human-Al teams is built on transparency and a shared understanding.
According to Hosain et al. (2023), reducing the “black box” effect by providing clear
explanations of how Al makes decisions can enhance user confidence. Endsley
(2023) emphasizes that establishing a shared situational awareness within human-Al
teams enables the Al to act in a predictable manner. This predictability supports
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teamwork and fosters trust. Complementing these views, Balasubramaniam et al.
(2023) point out that trust can be reinforced through ethical guidelines that ensure
users can understand not only the actions of the systems but also the reasoning
behind them.

A lack of trust can lead to disengagement and decreased motivation, reducing
worker’s willingness to put effort into their tasks (Fulmer & Gelfand, 2012). In
automation, distrust can increase cognitive workload. Workers may allocate
additional mental resources to verify the Al's actions, which can lead to faster fatigue
and reduced situational awareness (de Visser, Pak, & Shaw, 2018). The authors Lee
& See (2004) expand on the importance of establishing an appropriate level of trust
in human-automation interaction, noting that both under-reliance and over-reliance

can compromise safety and operational success.

Therefore, organizations that take a proactive approach to addressing concerns
about trust between workers and machines can enhance productivity and

performance while fostering the well-being of their employees.

Various approaches have been explored to address human-automation trust in the
workplace. Some approaches involve both humans and robots, where the robot
responds to the operator's needs or feedback. Others focus solely on the operator's
perspective, allowing trust to develop without needing the machine to adapt or
respond. This research categorizes the information into dual-focus trust and operator-

only trust to enhance understanding.

4.2.5.1 Dual-Focus
Montini et al. (2023) and Kambarov et al. (2023) propose a structured framework for
cultivating trust between humans and collaborative robots (cobots) by ensuring a

human-aware, adaptable, and safe system.

The framework of Montini et al. (2023) focuses on developing human-aware

collaborative robotic systems through three key pillars: Humanization, Smartification,
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and Automation & Equipment. Humanization emphasizes the integration of cobots
into human work environments by addressing human factors such as safety, well-
being, and ergonomics. Smartification highlights the use of sensors and the Industrial
Internet of Things (lloT) to collect and analyze data, enabling informed decision-
making, adapting to environmental changes, and ensuring trust in collaborative
systems. Lastly, Automation and Equipment focuses on selecting and configuring
automation tools like cobots to ensure flexibility and adaptability in the work cell. This
enhances productivity and operational effectiveness while maintaining human

control.

Kambarov et al. (2023) propose a human-centric human-robot communication
(HCHRC) framework to boost productivity and support well-being in assembly
operations. In this framework, humans and robots communicate in real-time through
sensors, utilizing the following technologies: Human Speech Recognition, Aided
Virtual Reality, Work Instruction Guiding, Assembly Object Recognition, Human

Motion Prediction, and Hand Gesture Control (See Figure 17).

Human Speech
Recognition

Figure 17. Technologies for a Human-Centered Human-Robot Communication.
(Own elaboration, 2024)

Peruzzini et al. (2024) propose a Smart Manufacturing Systems Design (SMSD)

framework that explores the concept of mutual learning between humans and
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machines to enhance trust. This framework fosters a cooperative relationship inspired
by natural ecosystems, utilizing digital replicas of humans, machines, and the

environment to simulate and manage factory operations in real-time.

Isaza Dominguez (2024) adds that digital twin technologies are crucial for improving
worker safety, enhancing human-robot collaboration, and optimizing efficiency in
manufacturing cells. However, these technologies are still limited in their ability to

validate models in real-world settings (Isaza Dominguez, 2024).

Barros et al. (2023) present a thermal imaging safety sensor that allows for real-time
and cost-effective safety monitoring by detecting human presence around machinery,
thereby preventing accidents. This method is low complexity, consumes little energy,
and has a small footprint, avoiding reliance on complex algorithms that require

training.

4.2.5.2 Operator-Only

Locatelli et al. (2024) and Panagou et al. (2024) discuss the significant impact of
involving operators in the robot integration process on building trust. To achieve this,
Locatelli et al. (2024) recommend using bottom-up strategies that encourage
employees to participate in the innovation process. Additionally, they emphasize the
importance of providing workers with evidence of effectiveness through
experimentation and education about the technologies.

Furthermore, Panagou et al. (2024) found that the robot’'s appearance greatly
influences human comfort and perceived reliability, which is why it is essential to
include operators in the design and implementation phase. The authors recommend
training operators before implementation to improve perceptual safety and reliability.

Perceived safety plays a crucial role in building trust, as operators need to believe

that robots will prioritize their interests and well-being (Apraiz, Mulet Alberola, Lasa,
Mazmela, & Ngoc Nguyen, 2023).
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In conclusion, building trust between humans and robots is essential for ensuring
safe, productive, and efficient collaboration. Trust can be established through
transparency in Al, shared situational awareness, and ethical guidelines that clarify
robot actions (Hosain, et al., 2023); (Endsley, 2023); (Balasubramaniam, Kauppinen,
Rannisto, Hiekkanen, & Kujala, 2023). Frameworks proposed by Montini et al. (2023)
and Kambarov et al. (2023) incorporate human-centric designs and real-time
adaptability to enhance operator comfort and trust. The involvement of the operator
in the design process, as advocated by Locatelli et al. (2024) and Panagou et al.
(2024), further improves perceived reliability. Additionally, technologies such as the
thermal imaging safety sensor suggested by Barro et al. (2023) reinforce trust in

collaborative environments through real-time monitoring.

4.2.6 Emotional Assessment

Emotions are mental states that occur in response to stimuli and are expressed
through physical and physiological changes, influencing how individuals perceive and
react to their environment (Ekman, 1992); (Loizaga, Toichoa Eyam, Bastida, &
Martinez Lastra, 2023). According to Ekman (1992) emotions can be recognized
through specific facial expressions specific to each emotion. Emotions play a
significant role in work efficiency, decision-making, and interpersonal relationships,
all of which directly affect industrial operations. (Loizaga, Toichoa Eyam, Bastida, &
Martinez Lastra, 2023)

Emotional assessment as a human factor in Industry 5.0 explores how human
emotions influence interactions with external stimuli in industrial workplaces. It can
be achieved through technology and robotic interactions that recognize human
emotions and adjust accordingly (Tao, et al., 2023). Although technology plays a

crucial role, it is not the only way to achieve emotional assessment.
In 2021, Chin et al. (2021) studied emotional intelligence in the manufacturing
industry workforce. They found that emotional management, which refers to “the

ability to regulate positive and negative emotions within oneself and others”, and
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emotional control, which refers to “the ability to control strong emotional states”, are
strongly related to organizations’ performance. Similarly, Salvadorinho et al. (2023)
state that happier, engaged, and empowered workers enhance competitive
advantage by retaining human capital, which leads to more productive practices and

innovative solutions, ultimately resulting in greater performance.

Therefore, organizations that take a proactive approach to addressing emotional
assessment can enhance productivity and performance while fostering the well-being
of their employees.

Various approaches have been explored to address emotional assessment in the
workplace. This research categorizes the information into emotion-supportive and

emotion-responsive to enhance understanding.

The emotion-supportive category refers to how human emotions affect workplace
interactions, focusing on the worker's perspective. In this context, technology does
not need to respond to emotions directly; instead, it may serve as a tool for emotional

assessment, improving understanding without necessitating an immediate reaction.

On the other hand, the emotion-responsive category refers to how technologies react
to workers' emotions. In this approach, the emphasis is on enhancing the
technological response. Utilizing human emotions as a tool aims to enhance
technology's sensitivity and response, ultimately fostering emotional well-being. In
these applications, human emotions are assessed through real-time physiological

metrics.

4.2.6.1 Emotion-Supportive

Sagar et al. (2023) emphasize meditation as a valuable organizational resource that
enhances employee well-being and performance. The study employed the World
Health Organization Quality of Life (WHOQOL) scale to evaluate meditation's impact
on manufacturing company employees. The results showed significant improvements

across all assessed areas: physical health, psychological well-being, social
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relationships, and the work environment. The authors suggest that even if meditation
does not improve employee performance, workers can still be trained in meditation
techniques to address any shortcomings. They also recommend future research on
virtual meditation programs integrating artificial intelligence (Al).

Shukla et al. (2024) developed a Strategic HR Value Chain Model to evaluate human
resource (HR) practices in relation to organizational objectives. The authors outline
strategies for integrating remote work and worker skill development, supported by
case studies. They suggest future use of the Metaverse to enhance virtual
recruitment, engagement, and training, leading to technological innovation

emphasizing empathy and inclusivity.

Although the research conducted by Sagar et al. (2023) and Shukla et al. (2024)
primarily emphasizes approaches that do not rely on technology, it also provides
valuable insights into how these methods can be effectively enhanced through
technological integration.

Baroroh et al. (2024) analyze the advantages of Gamification for Manufacturing (GfM)
in enhancing workers' psychological well-being while also promoting productivity.
Based on their analysis, the authors propose a framework to guide the
implementation of Gamification for Manufacturing (GfM) in Industry 5.0. This
framework addresses both psychological well-being and productivity through game
components. The framework is expected to enhance commitment, satisfaction,
motivation, engagement, enjoyment, competition, collaboration, and social
connectedness. Additionally, it is expected to improve productivity, efficiency,

transparency, learning flow, and servitization.

4.2.6.2 Emotion-Responsive

Pierleoni et al. (2022) and Noori et al. (2024) explore an emotion-responsive
approach that utilizes sensors and loT devices to react to real-time data and adjust
systems accordingly. Both studies primarily focus on dynamically modifying systems

or environmental responses based on workers' data.
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For instance, Pierleoni et al. (2022) examine the effects of lighting in industrial
environments where workers often have limited exposure to natural daylight. They
further state that variations in natural light influence emotions, mood, perception of
space, concentration, and performance. Their study focuses on aligning artificial light
with natural circadian rhythms, which are “internal processes that regulate the sleep-
wake cycle”. The goal is to develop a wireless sensor network based on the Internet
of Things (loT) that can control lighting systems in industrial settings according to
these circadian rhythms. According to the authors, the system contributes positively
to worker comfort, focus, and productivity. This approach is recommended for
organizations with both day and night shifts.

Noori et al. (2024) emphasize the importance of integrating human-in-the-loop (HiTL)
and human Cyber-Physical Systems (CPS) within industrial environments. This
integration allows systems to identify cognitive traits, roles, and interfaces in human-
machine interactions. As a result, the systems can adapt to meet human needs by
monitoring worker emotional or physical conditions through real-time data.

Abril-dimenez et al. (2023) propose a self-quantified dashboard to improve emotional
well-being and productivity through personalized self-management tools. The
dashboard receives data through wearable devices and processes it with an
algorithm developed by the authors that, as a result, provides personalized feedback
and motivational messages. This promotes positive behavioral changes, enhancing
well-being and productivity.

In conclusion, emotion-supportive strategies such as meditation, human resources
guidelines, and gamification can help create healthier environments by enabling
individuals to understand, control, and manage their emotions. Furthermore, emotion-
responsive approaches, like loT-driven lighting adjustments, can adapt to real-time
emotional states to improve comfort and concentration. Assessing emotional well-
being in the workplace will boost motivation, enhance worker well-being, and improve

overall performance.
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4.3 Technologies

The 149 papers discussed in Chapter 3 were categorized according to four key
technological trends:

1. The first trend emphasizes the importance of facilitating effective and natural
communication between robots and humans. This section refers to this trend as

“Eacilitating natural communication” to help readers better understand it.

2. The second trend focuses on optimizing work and workplace environments to
enhance workers' well-being. In this section, this trend is referred to as “Modifying

work environment” to help readers better understand it.

3. The third trend relates to customizing technology to meet operators' individual
needs. This section refers to this trend as “Customizing individual needs” to help

readers better understand it.

4. Lastly, the fourth trend concentrates on integrating monitoring technologies that
assess workers' real-time physical, cognitive, or psychological state and
provide accurate feedback. In this section, this trend is referred to as “Monitoring
states and providing feedback” to help readers better understand it.

Additionally, the relationship between human factors, previously discussed in Chapter
4, section 4.2, and these trends will be examined and analyzed. The following bar
chart presents each trend along with its associated human factors (See Figure 18). In
other words, the graphic below illustrates the number of papers categorized under
human factors that correspond to each specific trend.
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Figure 18. Human Factor per Trend.
(Own elaboration, 2024)

cognitive, or psychological states in real-time to provide accurate feedback.

4.3.1 Facilitating effective and natural communication between robots and

humans

There is a growing trend of enhancing effective and natural communication between

robots and humans. The aim is to develop technologies and strategies that bridge the

gap between human communication styles and robotic systems, ensuring seamless

communication.

According to Alves et al. (2023), human-robot interaction can facilitate the transition

from digitally system-centric to operator-centric production. The authors further state

that human-robot interaction, collaborative robots, digital twins, augmented reality,
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and virtual reality are technologies primarily centered on communication, signifying

that their foremost objective is to facilitate interaction with the operator.

Improving communication between robots and humans is essential for fostering trust
among workers in the workplace. A higher level of trust creates a safe and
comfortable environment for human-robot interactions, which, in turn, increases
employee engagement and motivation. As a result, workers feel encouraged to put in
more effort and fully utilize the systems available to them, leading to improved

productivity.

Conversely, when trust is lacking—known as under-reliance—employees face a
heavier cognitive workload as they expend extra mental energy verifying the system's
decisions. On the other hand, excessive trust—referred to as over-reliance—can
compromise worker safety. To address these challenges, it is crucial to enhance

communication between humans and robots.

Lu et al. (2022) introduce the concept of "short-term human intent understanding"”
(See Figure 19), which describes how robots interpret and respond to human
intentions at three distinct levels of understanding: Instruction Understanding (l1U),
Action Understanding (AU), and Goal Understanding (GU). Instruction Understanding
involves decoding explicit instructions from the operator. Action Understanding refers
to predicting an action or motion, enabling the machine to infer meaning based on
the operator's actions. Finally, Goal Understanding entails inferring a human's

objective by identifying a set of associated actions.

To achieve this, Lu et al. (2022) identify two types of communication between humans
and robots: direct communication and indirect observation. In direct communication,
humans interact directly with the robot, while in indirect observation, the robot
observes human behaviors to determine how to respond (See Figure 19). Each type
of communication relies on specific devices to facilitate interaction, including

microphones, cameras, and sensors that capture biological or motion data.
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Figure 19. Short-term Human Intent Understanding visualization.
(Own elaboration, 2024)

These tools facilitate effective communication between robots and humans,
supporting Industry 5.0's vision of intuitive and collaborative human robots.
Furthermore, it closes the gap between human communication styles and robotic

systems.

Building on the concept presented by Lu et al. (2022), Aceta et al. (2024) propose a
method for seamless direct communication, specifically through the operators'
speech. The authors introduce the Knowledge-driven Dialogue Framework for
Industry (KIDE4I), allowing workers to interact smoothly with industrial systems.
Through voice commands, operators can communicate directly with the KIDE4lI,
which intelligently extracts essential elements from these commands and implements
them in the target system. This study aims to facilitate communication between
humans and robots, enabling workers to see the system as a valuable tool that boosts

productivity.

Helm et al. (2023) propose Intelligent Video Analysis (IVA) as a method for monitoring

and detecting operator errors. While current research focuses solely on detection

157

"



without providing feedback, this serves as a strong foundation for developing a real-
time IVA system. This system would utilize artificial intelligence to offer feedback to
operators. According to the model presented by Lu et al. (2022), IVA falls under the
category of indirect observation communication, specifically through action.

Kambarov et al. (2023) emphasize the importance of designing user-friendly
interfaces that enhance communication between operators and robots. The authors
further assert that providing input to the robots should be intuitive for the workers.
Additionally, the information provided by the robots should be sufficient to create
situational awareness, enabling interventions in unexpected situations. Thus, the
authors propose the Human-Centered Human-Robot Communication (HCHRC)
framework, which consists of a set of technologies that aid the communication
between humans and robots (See Figure 17).

Moreover, the necessity of establishing trust profoundly affects the tendency toward
fostering effective and natural communication between humans and robots. Figure
18 illustrates this, indicating that trust is the most notable human factor in this trend.
As Chapter 4, Section 4.2.5 articulated, this underscores the significance of
developing communication systems that enhance confidence through dual-focus

interactions and operator-exclusive scenarios.

4.3.2 Optimizing work and workplace environments to enhance workers' well-
being

There is a growing trend of dynamically using technology to modify and optimize work
and workplace environments to enhance employee well-being. This shift emphasizes
developing adaptive, human-centered workplaces where technology enhances
health, comfort, and productivity through task or environmental adjustments.

This direction is significant, especially for organizations where employees experience
high levels of physical fatigue. Embracing this trend has the potential to enhance
employee well-being by reducing the likelihood of musculoskeletal disorders (MSDs).
As discussed in Chapter 4, Section 4.2.1, MSDs adversely affect the speed and
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accuracy of work tasks, leading to a rise in errors and an increased risk of injury,

ultimately impacting overall employee performance.

Pokorni et al. (2022) developed a Cognitive Assistance System based on Quality
Function Deployment (CAS-QFD). This system aims to design and implement
assistance tools centered around workers' needs while optimizing their work
environment to enhance productivity and well-being. The authors identify three
changeable environmental influences impacting workers' well-being and in
consequence their productivity (See Figure 20). Each type of influence comprises
different factors that can be adjusted through inputs. These inputs gather information
from the worker, analyze it, and produce an output that optimizes the environment.

This system proposes to involve workers throughout all the steps of the process.

Type of influence Influence Factors Input Output
Touchscreen
Camera
Projector
Optical ng.h't Eyetracking
condition Augmented
reality
Sensors
Signal light

Microphone
Microphone

Acoustical Noise Headset
condition Headset
Speaker
Vibration
Button Glove
Haptical Dirt
Touchscreens Wearables
Humidity

Figure 20. Environmental influence factors, inputs, and outputs.
(Own elaboration, 2024)
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The case study Pokorni et al. (2022) investigated a manual assembly process within
an industrial environment, highlighting the key challenges faced by workers. These
challenges include difficulties understanding complex instructions, high error rates
caused by poor lighting and noise, and insufficient guidance for inexperienced
employees. Data collected from interviews and surveys revealed that workers
prioritized clear instructions, while the business emphasized reducing errors and
enhancing task efficiency. This information was analyzed and mapped to specific
assembly tasks, identifying necessary environmental adjustments to improve overall
performance. The cognitive assistance system was prototyped and implemented to
address these specific needs in assembly tasks. In this case, the system provided
real-time visual instructions through augmented reality and alerted workers to
potential errors. Interaction methods include touchscreens and voice commands,
while outputs comprise projectors, augmented reality overlays, and wearable
devices. The prototype led to adjustments based on worker feedback, such as adding
detailed overlays for clarity, switching from auditory to visual instructions when noise
interfered, and adjusting lighting to reduce eye strain. Additionally, the prototyped
system led to three key findings: increased productivity as workers completed tasks
faster, enhanced quality with reduced error rates from real-time guidance, and
improved worker satisfaction, marked by lower stress and greater confidence in skills.

In addition, Pierleoni et al. (2022) introduced an loT-based wireless sensor network
highlighting the importance of lighting control systems in regulating circadian rhythms.
This loT solution utilizes sensor networks for real-time control and monitoring of
lighting systems. Its primary goal is to enhance visual comfort, boost worker well-
being, and improve productivity in industrial environments. By dynamically adjusting
artificial lighting to mimic natural light, the system regulates light intensity and color
temperature to create optimal conditions focused on adapting to workers' needs. The
study reveals that variations in natural light affect emotions, concentration, and overall
performance. Ultimately, this system improves industrial workflows and worker
conditions for both day and night shifts.

However, improving and optimizing the work environment can be achieved not only
by adjusting the factors identified by Pokorni et al. (2022), such as lighting, humidity,
and noise, but also by considering other important variables. These include the
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distribution of tasks between humans and robots and adjustments to machine

operations, such as speed, stiffness, and workload distribution.

Picone et al. (2024) introduce the Operator Thing (OT) concept, which digitalizes
human operators and machines to create a responsive industrial environment that
adapts to human needs in real-time. This system acts as a digital twin, collecting and
analyzing biometric and behavioral data, including parameters such as heart rate and
stress indicators. It responds dynamically by offering physical assistance, such as
adjusting the stiffness of robots or modifying their load-carrying behavior. The system
can also adjust operational speed to slow down processes when the operator shows
signs of being overworked or stressed. Depending on the operator's assessed fatigue

or stress levels, the system may also reassign tasks as needed.

As shown in Figure 18, physical fatigue is the most prominent human factor that this
trend should address. This aligns with the categorized approaches for that factor:
ergonomic interventions, advanced monitoring technologies, and dynamic task
allocation systems, presented in Chapter 4, section 4.2.1. Nevertheless, integrating
cognitive workload, stress, and emotional assessment considerations is essential for

effectively addressing the modification and optimization of the work environment.

4.3.3 Customizing technology to address individual needs

There is also a growing trend toward customizing technology to meet operators'
individual needs. This trend emphasizes personalized technologies and systems that
cater to individual workers’ unique physical, mental, and emotional characteristics.

The goal is to foster inclusive and supportive work environments.

In this context, Chand et al. (2023) highlight the necessity of personalized fatigue
assessment for manufacturing workers, considering their differences in operator
muscle strength, operation type, and task loads. The authors explain that assessing
different capabilities and muscle strengths can minimize long-term injuries. To
achieve this, the authors developed a personalized muscle fatigue profile using s-
EMG technologies to measure operators’ neuromuscular activity. Later that same
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year, in the NAMRC 51,2023 conference, Chand and Lu (2023) incorporated the
personalized muscle fatigue profile to enhance their approach to managing fatigue
accumulation across teams. They focused on balancing fatigue accumulation and

recovery rates to balance these factors better.

Yin & Li (2023) researched the impact of various noise types in manufacturing
environments on individuals with different sensitivities to sound. The authors
identified fan noise, noisy human voices, and striking workpiece noise as the most
common types. The participants of the experiment were divided into two groups:
“noise-sensitive” and “noise-insensitive”. Each participant completed a visual search
task while wearing headphones that played different noise types, and an eye tracker
monitored pupil changes and visual focus areas. The key findings revealed that the
noise-sensitive group experienced longer delays in completing the task and had
slower reaction times compared to their noise-insensitive counterparts. Additionally,
there were significant increases in pupil diameter among the noise-sensitive
participants, indicating elevated anxiety levels. The analysis of visual focus also
demonstrated that this group tended to shift their attention away from the target more
significantly during noisy conditions. These findings highlight the need for
personalized tools and systems to accommodate individual differences in noise

sensitivity and cognitive responses.

Javernik et al. (2023) propose personalized guidelines to better meet the needs of
individual workers by adjusting robot motion parameters. This personalization
involves modifying aspects like the speed and timing of the robot's movements to
align with each worker's physical and cognitive abilities. The authors conducted an
experiment involving two scenarios, each with different robot motion parameters and
varying levels of worker utilization. In the first scenario, robot parameters were
adjusted to enable workers to operate at 60% of their capacity, while in the second
scenario, workers operated at 100% capacity. Worker utilization is calculated based
on the time spent by workers on preparation and final assembly, relative to the robot’s
operating time. The key findings indicate that an increase in worker utilization resulted
in a significant 35% increase in workload. These findings underscore the importance
of personalized guidelines in collaborative workplaces, which consider workers'
differing abilities, skills, and personalities.
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Margolis et al. (2024) conducted an experiment to evaluate how different
backgrounds can affect a worker's perspective on technology, particularly, on
augmented reality. The authors analyzed and compared three distinct user profiles.
The first user profile, known as the Human Factors (HF) participants, consisted of
individuals experienced in usability and perception. The second user profile, referred
to as the System Development (SD) group, was composed of individuals with
backgrounds in IT, engineering, or computing. Finally, the third user profile, called the
General Users (GU) group, included individuals from various backgrounds, excluding
those with expertise in IT, design, or user experience. All distinct user profiles utilized
an augmented reality application with the intention of analyzing and comparing the
user experiences based on their profiles. The results demonstrated differences in
how each user profile perceived the use of the augmented reality application,
depending on their backgrounds. These findings highlight the importance of
personalizing technology that considers individual worker backgrounds to enhance

employee satisfaction and, in turn, improve overall output.

As shown in Figure 18, cognitive workload and emotional assessment are the most
significant factors that this trend should address. This aligns with the approaches
discussed in Chapter 4, sections 4.2.3 and 4.2.6. These approaches primarily focus
on analyzing workers' perspectives, which is consistent with the trend of directing

technology to meet individual workers' needs.

When technology or systems are customized to meet the specific needs of individual
workers, their overall well-being is improved by reducing cognitive workload and
preventing overload. Overload can lead to stress, while the opposite—underload—
can result in disengagement and diminished motivation at work. By effectively
managing workers' cognitive workloads, productivity tends to rise and error rates tend
to drop. Therefore, customizing technology can be particularly advantageous for
companies with fluctuating task volumes, as it helps balance instances of cognitive
overload and underload.

Another significant advantage of customizing technology to fit workers' individual

needs is its ability to aid in emotional management. When operators feel more
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comfortable with the tools and systems they use, they can better navigate their
emotions. Since emotions play a crucial role in efficiency and decision-making, which
directly impacts productivity, organizations can benefit from offering technologies that
match each worker’s unique characteristics. This approach is especially relevant for
roles that involve frequent decision-making, as it helps ensure that emotional states

do not negatively affect performance.

4.3.4 Monitoring workers’ physical, cognitive, or psychological state in real-
time to provide feedback

There is a growing trend to integrate technologies that monitor workers' conditions in
real-time. These technologies offer precise feedback to enhance employee
awareness and well-being through notifications and recommendations based on their
states, which, according to Lu et al. (2022), can be categorized as physical, cognitive,
or psychological. The aim is to deliver actionable insights or real-time alerts regarding

their well-being.

Pistolesi et al. (2024) present a privacy-preserving posture-tracking system that
monitors workers' postures and provides feedback whenever deviations from the ISO
11226 standard are detected. The tracking system employs Laser Imaging Detection
and Ranging (LIiDAR) to assess the lower-body postures, while a smartwatch
assesses the upper-body positions. The data collected from both the LIiDAR and the
smartwatch is then processed using machine learning algorithms to identify risky
postures and suggest improvements. Alerts are sent directly to the smartwatch,
enabling users to take immediate action to correct their posture when it strays from
the ISO 11226 standard. Furthermore, the system was tested on 30 participants
engaged in six different manufacturing tasks, yielding impressive accuracy rates of
98%. The system successfully preserves workers' privacy without sacrificing
functionality by utilizing inertial data from a smartwatch and LiDAR instead of
cameras. Additionally, workers receive real-time notifications on their smartwatches
to adjust their posture; these posture records are stored and analyzed for long-term
ergonomic improvements, potentially paving the way for personalized training

programs.
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Lemos et al. (2024) introduced a system for assessing personalized environmental
risks through the use of monitoring devices. This system includes an alert and
recommendation feature to reduce workplace exposure risks. It continuously tracks
environmental factors such as dust, noise, ultraviolet radiation, illuminance,
temperature, humidity, and the presence of flammable gases. In addition, the system
gathers workers' health data, focusing on diseases and symptoms linked to these
monitored environmental factors. The development of criteria for identifying these
diseases and symptoms was informed by recent research and collaborations with two
physicians. A central server plays a key role by cross-referencing environmental
factors with workers’ health histories, which are classified as risks or non-risk
environments, using a random forest machine learning model. Furthermore, the
recommendation system is also powered by a machine-learning model that
generates alerts based on environmental classifications. The authors' primary
objective is to enhance workplace safety by merging individual health histories with
real-time monitoring of environmental conditions. This integration offers actionable
insights for both companies and employees, optimizes safety practices, and
minimizes exposure to harmful environmental elements. Notably, the system’s key
findings highlight the effective personalization of risk assessment through generated
alerts and recommendations, alongside its potential for scalability and adaptability,

allowing expansion into other work environments by incorporating additional sensors.

Nguyen et al. (2024) integrate concepts proposed by Pistolesi et al. (2024) and
Lemos et al. (2024). This integration involves monitoring workers' postures and
environmental factors to promote proactive prevention. The collected data is then
analyzed, providing real-time notifications through wearable devices when workers’
postures deviate from recommended ergonomic standards, thereby reducing health
risks such as musculoskeletal disorders (MSDs). Additionally, workers are alerted to
take corrective actions when immediate risks are identified, such as extreme
temperatures, high noise levels, or poor air quality. The authors propose integrating
Artificial Intelligence to offer personalized, real-time insights and decision-making
capabilities, reducing latency and enhancing worker safety. Moreover, the
combination of real-time interventions and data insights may aid in designing safer

work environments.
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As shown in Figure 18, stress is the most significant factor that this trend should
address. This aligns with the approaches discussed in Chapter 4, Section 4.2.4,
which primarily focus on assessing real-time conditions to facilitate both immediate
and long-term adjustments. However, attention is also crucial for this trend due to the
necessity of immediate risk assessments, which can help identify safety risks arising
from distractions or lack of concentration, as discussed in Chapter 4, Section 4.2.2.

Stress arises from employees having limited ability to anticipate and control their
circumstances. One effective approach to reduce stress-related issues is the
implementation of enhanced real-time feedback methods. These methods give
workers greater autonomy over their health in the workplace. Organizations need to
address stress within their environments, as its prevalence among employees can
lead to various health problems, including musculoskeletal disorders and depression.
Additionally, the effects of stress go beyond employee well-being; it also negatively
impacts performance by increasing task completion times and error rates, which
ultimately leads to decreased productivity. This is specially relevant for companies
facing high production pressures, such as those using the just-in-time (JIT)

manufacturing model.
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Chapter 5: Conclusions and Recommendations

5.1 Introduction

This chapter delineates the research conclusions regarding the influence of workers'
well-being on productivity within the framework of Industry 5.0, accompanied by
recommendations for academics and companies derived from the findings of this
thesis.

5.2 Conclusions

This research utilized the Competitive Technology Intelligence (CTI) methodology to
identify the trends related to the human-centricity pillar of Industry 5.0. Scientometrics
was used as part of the CTl methodology combined with PRISMA guidelines to reveal
these trends. Additionally, the research provided recommendations for companies
aiming to become more human-centric and suggested areas for further research for

academics.

The academic sources were obtained from the Scopus database and cover the period
from January 1, 2019, to October 1, 2024. This research focused on Industry 5.0,
specifically on the influence of workers’ well-being on productivity.

Furthermore, to improve the work's reproducibility, the PRISMA methodology was
incorporated into the CTl methodology (See Table 2). During this process, it was
observed that the CTIl methodology already covered some of the PRISMA steps, but
PRISMA complemented some of the CTI steps.

1. The Information Sources stage outlined by the PRISMA methodology includes
database selection and time filters. This task is addressed in the identification
of data sources stage from the CTI.

2. While the Search Strategy phase outlined by the PRISMA methodology
recommends selecting keywords using the PICO framework, this research
utilized one of its variants, the PEO framework. Additionally, the CTI
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methodology advocates selecting keywords through a literature review. By
integrating these two methodologies, the robustness and reliability of the
keyword selection for the secondary source search were enhanced.

. The query construction and execution stage from the PRISMA methodology
involves the final composed query and its results. This task is part of the search
strategy design outlined by the CTI methodology.

. The CTI methodology outlines a process for normalizing and preparing
information to ensure data consistency and proper formatting. The PRISMA
methodology effectively complements CTI by providing standardized
guidelines. PRISMA includes the eligibility element, which involves inclusion
and exclusion criteria, and defines the screening process necessary to apply
them. This process involves analyzing the study’s titles and abstracts to
identify those that may not align with the research topic.

. The Quality Assessment phase of the PRISMA methodology is included in the
Data collection stage of the CTI methodology.

. The PRISMA methodology features a bibliometric findings phase, which is part
of the information analysis stage within the CTI methodology. Both offer
quantitative data. The PRISMA methodology highlights the time distribution of
publications, the distribution of document types, the distribution of publication
sources, and a word cloud representation. The CTl methodology expands on
this by addressing fundamental questions, known as the five Ws, that are
relevant to the research.

. The PRISMA methodology encompasses a literature review results stage that
highlights each study’s essential characteristics. While PRISMA generally
works with a smaller volume of data, CTl is designed to analyze larger datasets
and offers more flexible criteria. In this research, the detailed literature review
guidelines from PRISMA were implemented. This approach proved beneficial
by facilitating the identification of similarities and differences across the
studies, ultimately fostering deeper insights.

Six key human factors are crucial in shaping well-being and productivity in Industry

5.0 (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). This research

focuses on the factors identified by Loizaga et al. (2023): physical fatigue, attention,

cognitive workload, stress, trust, and emotional assessment. Additionally, it found that
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each factor assesses workers’ well-being and productivity differently and requires

customized approaches combining technological and human-centered strategies

(See Table 11).

Table 11. Summary Human Factors.
(Own elaboration, 2024)

Number . .
Human Well-being Productivity
of . . Approaches
Factor impact impact
Papers
Short-term:
Decreased strength, Ergonomic
localized muscle interventions: Task and
fatigue, and impaired workplace re(designs)
motor control MSDs are recurrent
among industrial Advanced monitoring
operators; they technologies:
. arise from work Wearables to identify bad
Physical
39 . demands. Reduced postures or muscle
Fatigue ]
speed, and fatigue
Long-term: .
precision, and Dynamic task allocation
Musculoskeletal .
_ increased errors systems: Strategic
disorders (MSDs) ) o ]
and risks of injury assigment of tasks
according to metrics such
as makespan, energy
expenditure, and mental
workload
Distraction: Eliminate
external stimulation that
can lead to safety risks
through distractions.
Technology that reacts to
. ) Increased errors, signs of distractions, such
6 Attention Safety risks ]
anxiety as abrupt movements
Concentration: Increase
concentration awareness
through notifications or
the sensation of being
monitored
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34

Overload: Time
needed for a task

exceeds the time

Subjective: Evaluation of
perceived work overload
by the operator through

questionnaires

Objective: Frequently

evaluated through cardiac

Cognitive

Workload

available for the
operator may lead to

stress

errors increase

when operators

workload

Underload: Time
needed for a task is
too low compared to
the time available for
the operator may lead
to disengagement,

lack of motivation

Task performance

decreases and

percieve excessive

activity and visual
scanning — Heart rate
variability (HRV),
Pupillometry,
Electroencephalography
(EEG), Auditory signals,
and Near-infrared

spectroscopy (fNIRS)

Combination: Integratin
both approaches may be
beneficial for achieving a
more comprehensive

evaluation

15

and error rates Laboratory-controlled
Stress which is related with increase, environment: Evaluation
health issues such as production rates of stress and
MSDs and depression decreased performance in a
controlled environment. It
does not consider
external factors. The goal
is to make long term
adjustments
Disengagement and Under-reliance:
30 Trust

Feeling unprepared

and lack of control

Task execution time

Real-world
environment: The goal is
to assess real-time
conditions in order to
make immediate

adjustments.

decreased motivation,

reducing worker's

Increase cognitive

workload because

they may give

where robots respond to

Dual-focus: Involve

humans and robots,
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willingness to put effort additional mental the operator’s needs or
in their tasks resources to verify feedback

the system actions,

this leads to faster

fatigue and reduced
situational

awareness

Operator-Only: Develop

trust through the

Over-reliance: can , .
operator’s perspective,

compromise safety )
without the need for the

machine to respond

Emotion-supportive:

Technology serves as a
Poor work .
- . tool for emotional
efficiency, decision- ]
) assessment, helping
making, and ]
] operators enhance their
- interpersonal ]
Lack of ability to ) ) understanding of
relationships.

regulate positive and emotions instead of

Emotional ] ] Happier, engaged ]
25 negative emotions reacting to them
Assessment o and empowered _ _
within oneself and Emotion-responsive:
workers enhance ]
other . Technologies react to
competitive

workers’ emotions.

advantage by ]
Humans emotions are

retaining human
used as a tool to enhance

capital o
technology’s sensitivity

and response

In the "physical Fatigue" factor, ergonomic interventions focus on designing or
adjusting workspaces that minimize potential fatigue. Additionally, advanced
monitoring employs real-time tracking technologies to analyze data and enables
personalized feedback that prevents overexertion or bad postures. Dynamic task
allocation systems adjust task assignments based on workers' physical conditions,

ensuring a balanced workload with the help of collaborative robots.

The " attention” factor encompasses technological methods that enhance operators'

awareness of their concentration level, allowing them to adjust as necessary. An
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alternative approach to address attention is minimizing external stimuli that can lead

to distractions, which could endanger the operator's safety.

Pertaining to "cognitive workload," trends can be categorized into subjective,
objective, and combined approaches. Subjective methods include qualitative tools,
such as the NASA-TLX questionnaire, which gathers insights from the operator's
perspective. Meanwhile, objective methods provide precise data using technologies
like eye tracking, heart-rate variability (HRV), and pupillometry. Currently, the most
adopted technology for objectively measuring cognitive workload is cardiac activity.
Lastly, combined approaches integrate both methods to achieve a more

comprehensive evaluation.

The " stress " factor can be measured through physical, physiological, and
psychological assessments. Physical assessments evaluate posture and behavior
using tools such as the OWAS and RULA systems. Physiological assessments track
bodily responses, including heart rate variability (HRV) and electrodermal activity
(EDA). Lastly, psychological measurements involve self-assessment questionnaires,
such as the Perceived Stress Scale (PSS). These assessments are used in both real-
world and controlled laboratory experiments. It was found that real-world stress

monitoring presents greater challenges due to variable environmental conditions.

Concerning “trust”, dual-focused and operator-only approaches were outlined. Dual-
focus is based on building mutual trust between humans and robots through
technologies proposed in the human-centric human-robot communication (HCHRC)
framework shown in section 4.6.1, Figure 17. Operator-only focuses on involving
operators directly in the robot design and integration process by incorporating the
operator’s feedback and training in the early stages.

Finally, “emotional assessment” approaches were outlined and categorized into
emotion-supportive and emotion-responsive. Emotion-supportive focuses on
fostering emotional well-being, whether it's without technology, through strategies like
meditation, or by using technology as a tool, such as gamification. The main point is
that emotion-supportive technology does not expect real-time reactive responses. On
the other hand, emotion-responsive approaches use real-time data from sensors or
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loT devices to dynamically adjust environmental conditions to aid workers’ emotional

states.

Many studies propose innovative approaches that have yet to be tested in laboratory
or field settings. As a result, not all research includes quantitative data regarding the
impact of these approaches on workers’ well-being or their measurable effects on

productivity.

Based on the human factors analysis, the following trends have emerged:

1. The first trend emphasizes the importance of facilitating effective and natural
communication between robots and humans.

2. The second trend focuses on modifying and optimizing work and workplace
environments to enhance workers' well-being.

3. The third trend relates to customizing technology to meet operators' individual
needs.

4. Lastly, the fourth trend concentrates on monitoring workers’ physical, cognitive,

or psychological state in real-time to provide feedback.

In conclusion, the analysis of human factors underscores four principal trends
focused on enhancing the well-being of workers while also influencing productivity.
These trends indicate an increasing emphasis on human-centered methodologies
within technological frameworks, prioritizing the well-being of employees in Industry

5.0 settings.
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5.3 Recommendations for Academics

5.3.1 General Recommendations

Due to the rapid development of Industry 5.0, it is recommended that ongoing
exploration of Industry 5.0 focus on advancing human-centric manufacturing,
specifically worker well-being and productivity.

It is suggested that organizational reports on strategies for enhancing worker
well-being and their influence on productivity be explored to gain valuable
insights and estimate costs.

It is advisable that additional academic sources, such as the Web of Science
or Google Scholar be utilized. This thesis focused on the Scopus database.
Further investigation into attention and stress as human factors in industrial
environments is desirable. These factors are often overlooked, highlighting a
significant gap that could lead to more research discussions.

5.3.2 Specific Recommendations

There is a need for further research into how to effectively integrate senior
workers with collaborative robots without increasing their cognitive workload
or error rates. A study by Pluchino et al. (2023) indicates that although senior
workers are willing to collaborate with robots, this partnership can lead to
greater mental strain. Therefore, this thesis suggests conducting experimental
research to devise and test adaptive human-robot interaction strategies that
minimize cognitive burden while ensuring both efficiency and accuracy. To
achieve this, it is recommended to follow the approach outlined in the first
trend, which emphasizes the importance of fostering effective and natural
communication. Since trust is a crucial human factor in this context, it is
possible that senior workers may exhibit either an over-reliance or under-
reliance on robots during their collaborative efforts.

The concept of emotion-supportive technology, as defined in this thesis, refers
to using technology as a tool for emotional assessment. This thesis
recommends further research into integrating technology to assist operators in
improving their understanding and management of emotions, as Sagar et al.
(2023) and Shukla et al. (2024) indicate. To achieve it, this thesis emphasizes
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the potential for personalized technologies or systems that address the unique
characteristics of individual workers, as emotional assessment is the most

prominent human factor in the third trend.

Recent findings by Ma et al. (2024) indicate that non-experts experience higher
cognitive workloads than experts, regardless of task complexity. This aligns
with the study of Gualtieri et al. (2024), as the authors emphasize the need for
guidelines for non-experts considering individual operators’ cognitive abilities.
On the other hand, research by Javernik et al. (2023) also reveals that
cognitive workload varies between different levels of “worker utilization” a
parameter calculated based on the time spent by workers on preparation and
final assembly, relative to robot's operating time. Acknowledging that
operators have different cognitive abilities and that non-experts experience
greater cognitive workload. Therefore, this thesis recommends further
investigation into effective guidelines tailored for non-experts. Emphasizing the
need for individualized training approaches to ensure that the training is
effective for all operators, regardless of their cognitive skills. Furthermore, this
recommendation is reinforced by the observation that cognitive workload is the

most prominent human factor influencing this trend.

175



5.4 Recommendations for Companies

5.4.1 Technological Recommendations

This thesis recommends considering dynamic task allocation systems, such
as those proposed by Granata et al. (2024) and Calzavara et al. (2024), in
high-workload industrial environments. The authors suggest a system that
utilizes real-time data on human variability, allowing for task reassignment
based on operators' physical and cognitive states. Companies that implement
these technologies have the potential to address both physical fatigue and
cognitive workload. By doing so, companies can improve their workers' well-
being and mitigate issues such as decreased strength, stress, musculoskeletal
disorders, cognitive overload, disengagement, and lack of motivation.
Additionally, these companies benefit through faster processing speeds,
increased precision, reduced errors, and a lower risk of injury. This proposal
is particularly relevant for medium—to high-complexity industrial
environments, where managing operators can be challenging.

It is advisable to consider technologies aimed at proactive protection, such as
those developed by Barros et al. (2023) and Polito et al. (2023). These
innovations emphasize the importance of detecting human presence to
prevent accidents before they potentially occur. As Lu et al. (2022) noted, the
future of industrial safety appears to be shifting towards a more proactive
methodology. Furthermore, the sensor introduced by Barros et al. (2023) is
characterized by its low complexity, energy efficiency, and small footprint.
Meanwhile, the wearable technology presented by Polito et al. (2023)
showcases remarkable accuracy and precision rates. The implementation of
proactive safety will reduce workplace accidents, lower costs, and increase
productivity as workers can perform with greater confidence. These
advancements hold great promise, not only in enhancing worker safety but
also in aligning with the sustainable principles of Industry 5.0.

In work environments where stress is a significant issue, this thesis
recommends adopting one of three approaches, listed in order of priority. First,
implement technologies that can monitor the worker's physical state using
physiological measurements, such as Heart Rate Variability (HRV) or Heart
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Rate combined with Electrodermal Activity (EDA), to provide real-time alerts
for stress-reducing interventions like meditation. Second, optimize work
processes when higher stress levels are detected in employees or make
adjustments to the workplace that contribute to reducing stress. Third,
incorporate technologies that facilitate communication between operators and
robotic systems, as research by Aceta et al. (2022) has shown the potential
for natural language communication to alleviate stress significantly.
Additionally, to assess the effectiveness of this approach, a self-assessment
questionnaire, such as the State-Trait Anxiety Inventory or the Perceived
Stress Scale (PSS), can be used. This is consistent with the study by Ciccarelli
et al. (2023), which highlights that exploring multiple methodologies and data
types can improve the accuracy of stress detection; this is expanded in
Chapter 4, section 4.2.4.

If a company faces multiple challenges related to the human factors mentioned
in this thesis, i.e., physical fatigue, attention, cognitive workload, stress, trust,
and emotional assessment, it is advisable to invest in wearable technology.
Wearables provide extensive coverage for addressing various human factors.
By improving these factors, the company can enhance both employee well-
being and productivity (See Table 11), ultimately resulting in a strong return on
investment. Furthermore, wearables can address the four identified trends in
this research (See Chapter 4), with one example presented for each trend in
the following section:

o Trend 1: Lu et al. (2022) suggest that wearables can enhance
communication by recognizing gestures and actions between robots
and humans across three levels of understanding: Instruction, Action,
and Goal Understanding. These levels were previously discussed in
Chapter 4, Section 4.3.1.

o Trend 2: Picone et al. (2024) suggest gathering and analyzing biometric
and behavioral parameters, including heart rate and stress indicators.
These measurements can be collected through wearable devices.
Based on these parameters, the environment responds to human

operators by offering physical assistance.
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o Trend 3: Chand et al. (2023) suggest personalized fatigue assessment
that considers muscle strength. Muscle strength can be measured
using s-EMG sensors, which are classified as wearables.

o Trend 4: In this trend, wearables are particularly significant due to their
potential to offer real-time feedback on workers' well-being. A notable
example is the study by Pistolesi et al. (2024 ), which not only assesses
upper-body positions using a smartwatch—considered a wearable—but
also delivers real-time notifications through the same device,
encouraging workers to adjust their posture as needed.

5.4.2 Management Recommendations

Companies interested in adopting a human-centric focus, specifically on the
influence of workers’ well-being on productivity, within the context of Industry
5.0 should consider key collaborators with prominent researchers such as M.
Faccio and I. Granata, both from Universita degli Studi di Padova in Padua,
Italy.

This thesis proposes a well-being program tailored for industrial environments.
Based on a study by Sagar et al. (2023), an eight-week meditation program
was implemented in an experiment, demonstrating positive outcomes in
employee efficiency, emotional stability, and stress reduction. The authors
noted significant improvements in workers' physical and psychological health,
as well as in their social relationships. Referring to the human needs pyramid
proposed by Lu et al. (2022), this program has the potential to address the
third and fourth levels, focusing on aspects such as belongingness and
personal and social acceptance. Overall, this program advances the human-
centric pillar of Industry 5.0.
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