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Influence of Workers' Well-being on Productivity in the Context of 
Industry 5.0: Applying a Competitive Technology Intelligence 

Methodology  
 

by 
 

Sofia Pamela Recinos Dorst 
   
 
 
Abstract   
 
In the new era of Industry 5.0, a human-centric approach is being adopted, 

emphasizing the importance of creating workplaces that support efficiency and worker 

well-being. However, this evolution raises questions about how to create a human-

centered work environment that prioritizes the well-being and, consequently, 

productivity. To address this issue, this thesis applies the Competitive Technology 

Intelligence (CTI) methodology to offer guidance and recommendations in this context 

by identifying trends related to the human-centric pillar of Industry 5.0, with a focus on 

the influence of workers’ well-being on productivity. Furthermore, this study proposes 

the incorporation of the PRISMA methodology into the CTI methodology with the 

objective of improving the reproducibility and robustness of the CTI process. As a 

result, the following trends were determined: (i) Facilitating effective and natural 

communication between robots and humans, (ii) Modifying and optimizing the work 

environment to enhance workers' well-being, (iii) Customizing technology to meet 

operators' individual needs, and (iv) Monitoring technologies that assess workers' real-

time states and provide accurate feedback. This study offers valuable insights by 

providing actionable recommendations centered on human-centricity within the 

framework of Industry 5.0. 
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Chapter 1: Introduction 
 

This chapter begins by outlining the motivation behind this research. It then defines 

the problem statement within the Industry 5.0 framework, emphasizing its human-

centric approach. The chapter presents the Competitive Technology Intelligence (CTI) 

methodology and delineates both general and specific objectives, along with the 

research questions, scope, and an overview of the proposed solutions. 

 

1.1 Motivation 
 
Industry 4.0 has enabled organizations to achieve significant advancements in 

automation and performance through the adoption of innovative and transformative 

technologies (Rahardjo, Wang, Lo, & Chu, 2024). As noted by Polivka & Dvorakova 

(2021), the nine technological pillars of Industry 4.0 include Big Data, autonomous 

(collaborative) robots, simulations, system integration, the Internet of things, cyber-

physical systems, cloud technologies, additive manufacturing, and augmented reality. 

These technological developments have revolutionized industries and led to fast 

growth. Nevertheless, amid these innovations, there is a need for a more holistic 

approach that considers human factors (Ling, et al., 2024).  

 

Industry 5.0 represents a transformative shift that emphasizes sustainability and work-

life balance. It enhances worker well-being by fostering collaboration between humans 

and machines, enabling both to thrive in harmony (Capponi, Gervasi, Mastrogiacomo, 

& Franceschini, 2024). Nonetheless, this evolution raises questions about how to 

create a human-centered work environment that prioritizes well-being and, 

consequently, productivity. 

 

The motivation behind this research stems from a gap in existing studies concerning 

Industry 5.0, a relatively new concept that has garnered considerable attention since 

the European Commission introduced it in 2019. Additionally, the subjective nature of 

human-centricity within Industry 5.0 creates ambiguity surrounding its practical 

implementation in industrial settings (Alves, Lima, & Gaspar, 2023). Consequently, 

this research aims to empower organizations and academic institutions to recognize 
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and seize the opportunities offered by Industry 5.0. by assessing the human-centric 

approach in industrial environments, with a specific focus on the influence of workers’ 

well-being on productivity. 

 

1.2 Problem Statement  
 
Staying updated on the latest innovations and trends is essential for a company to 

maintain a competitive edge in the market. Competitive Technology Intelligence is a 

systematic process that aids decision-making by monitoring the competitive and 

technological landscape to provide early detection of emerging technologies and 

innovations (Das, 2010). Ultimately, it supports organizations in maintaining a 

competitive advantage and navigating the complexities of their industries. 

 

In the manufacturing sector, new technologies should address both individual and 

collective needs while meeting production requirements (Coronado, et al., 2022). 

Industry 5.0 introduces a framework that emphasizes a human-centric approach, 

prioritizing human needs and interests in production processes (Breque, De Nul, & 

Petridis, 2021). Nevertheless, Alves et al. (2023) highlight that the concept of Industry 

5.0 has not been fully integrated into the industry, as it persists in confronting 

challenges associated with Industry 4.0. Consequently, this situation renders 

researchers and companies without sufficient guidance to successfully navigate the 

landscape of Industry 5.0 and facilitate the transition from Industry 4.0 to Industry 5.0 

within various organizations and sectors. 

 

By applying the Competitive Technology Intelligence methodology, this research aims 

to offer guidance and recommendations for companies pursuing Industry 5.0 to adopt 

a more human-centric approach that prioritizes workers' well-being and productivity.  
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1.3 Research Context 

1.3.1 Industry 4.0 

Industrial revolutions have persistently adapted to the necessity for change, leading 

to increased productivity facilitated by technological advancements and automation 

(Verma, 2024). Industry 5.0 represents the latest version of this concept. To 

comprehend its evolution over the years and the introduction of Industry 5.0, a 

concise summary of the challenges and benefits encountered by its predecessors will 

be presented. 

The Fourth Industrial Revolution centered on Human-Machine Interaction, guiding a 

wave of technological advancements that transformed industrial manufacturing 

processes (Sony, Anthony, Mc Dermott, & Garza-Reyes, 2021). It relied heavily on 

enhancing efficiency and productivity through automation and data exchange 

technologies (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). In this 

section, some of the benefits and disadvantages that Industry 4.0 propelled for the 

creation of Industry 5.0 will be mentioned. 

One of the benefits that Industry 4.0 has brought to industries is a broader range of 

new job opportunities (Grybauskas, Stefanini, & Ghobakhloo, 2022). Consecutively, 

increasing the demand for human resources with new requirements as traditional job 

roles undergo significant transformation (Sony, Anthony, Mc Dermott, & Garza-

Reyes, 2021). As a result, this leads to the creation of jobs, mostly in engineering, 

technician roles, production management, and robotics (Macpherson, Werner, & R. 

Mey, 2022).  

Another notable benefit is an increase in collaboration between the government and 

companies (Grybauskas, Stefanini, & Ghobakhloo, 2022). This is essential for 

overcoming current obstacles when implementing new technologies or work 

structures, such as Industry 5.0. 

On the contrary, a significant disadvantage is that Industry 4.0 created an unequal 

division of labor, where high skills and high technological knowledge would be 

necessary for proper performance in the work areas (Grybauskas, Stefanini, & 

Ghobakhloo, 2022). The underlying rationale for this phenomenon is that, in the 
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context of Industry 4.0, workers are required to modify and enhance their skill sets in 

response to advancing technologies. Consequently, in Industry 5.0, the goal is to 

adapt technology to meet the employees' existing skills and needs. “Rather than 

asking what we can do with new technology, we ask what the technology can do for 

us. Rather than asking the industry worker to adapt his or her skills to the needs of 

rapidly evolving technology, we want to use technology to adapt the production 

process to the needs of the worker” (Breque, De Nul, & Petridis, 2021).  

 

However, even workers with advanced digital skills may not be safe from digital 

replacement. Grybauskas et al. (2022) also suggest that these positions could easily 

be replaced by technologies and algorithms in the future, offering another reason for 

the industry to evolve. 

 

Furthermore, the problems are present not only in the workplace but also extend to 

the individual level of employees. In the academic literature, researchers began to 

mention the influence of Industry 4.0 on workers’ well-being (Zorzenon et al., 2022) 

and, therefore, on production rates. In 2017, Christensen et al. (2017) claimed that 

employee well-being is a positive element that can enhance productivity in a 

company. The International Labour Organization (ILO) also acknowledges that: 

“productivity growth and improvements in well-being are closely interconnected and 

can create mutually reinforcing positive feedback loops.” (See Figure 1). In other 

words, employee well-being can influence their performance at work, and work, in 

turn, can influence their well-being.  
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Figure 1. Relation between well-being and productivity. 

(Own elaboration, 2024) 

 
 

This aspect contributed to the list of reasons why a change in organizations was 

necessary. For example, Kovacs (2018) mentioned that a structural change is needed 

for sustainable development and promotion of well-being in the complexity of Industry 

4.0 and digital transformation. 

 

In summary, Industry 4.0 contributed to the creation of new jobs, higher wages due 

to increased demands, and higher company productivity. However, over the years, 

researchers and industry leaders have identified areas for further improvement within 

this framework. A combination of the gaps in Industry 4.0 and the new needs of the 

environment and society encouraged the creation of Industry 5.0, which supports a 

human-centric, sustainable, and resilient approach to technology.   

 

1.3.2 Industry 5.0  

Due to automation and the rapid adoption of technology, a growing need for new skill 

sets, job roles, and work models became necessary (Schwab & Zahidi, 2020). The 

Well-being Productivity
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Directorate for Prosperity within DG Research and Innovation organized two virtual 

workshops for participants from research and technology organizations throughout 

Europe, during which they explored the concept of Industry 5.0 (Müller, 2020). 

 

Industry 5.0 is centered around three key elements: Human-Centricity, Resilience, 

and Sustainability (See Figure 2) (Breque, De Nul, & Petridis, 2021). Unlike its 

predecessors, this industry aims to reshape the industrial landscape by becoming a 

resilient source of prosperity, producing within planetary boundaries and placing 

workers’ well-being at the center of the production center (Xu, Lu, Vogel-Heuser, & 

Wang, 2021). While Industry 5.0 presents a novel approach, it remains fundamentally 

rooted in Industry 4.0 and is not entirely independent of its predecessor. 

 

 

 
Figure 2. Key Elements of Industry 5. 

Adapted from: Breque, M., De Nul, L., & Petridis, A. (2021). Industry 5.0: Towards a 

sustainable, human-centric, and resilient European industry. European Commission 

Directorate-General for Research and Innovation, 1st edition, pp. X-X. CC BY 4.0. 

Available at https://doi.org/10.2777/308407 

 

Industry	
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Human-
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A human-centric approach aims to center workers' well-being at the center of the 

production process (Breque, De Nul, & Petridis, 2021). It focuses on evolving 

technology to adapt to worker skills instead of requiring the worker to acquire new 

skills to adapt to technology. In addition, it upholds workers' fundamental rights, which 

correspond to level 1 of the Industrial Human Needs Pyramid, as shown in Figure 4. 

 

Another key element of Industry 5.0 is sustainability. Rapid human development, 

uncontrolled population growth, increased greenhouse gas emissions, and 

biodiversity loss have disrupted Earth's balance (Barnosell & Pozo, 2024). Planetary 

boundaries define the limits within which humanity can safely operate by recognizing 

the constraints of the Earth's systems (Rockström, et al., 2009). Another innovative 

key element of Industry 5.0 is being sustainable by respecting planetary boundaries 

to avoid endangering future generations’ needs (Breque, De Nul, & Petridis, 2021) 

 

Finally, the authors of Industry 5.0 define resilience as “the need to develop a higher 

degree of robustness in industrial production, arming it better against disruptions and 

making sure it can provide and support critical infrastructure in times of crisis” 

(Breque, De Nul, & Petridis, 2021). This implies that production and business 

processes must be adaptable during unexpected, challenging periods.  

 

To achieve the goals of Industry 5.0, it is important to incorporate the tools of Industry 

4.0, as well as to develop new technologies. This requires a unified approach 

between humans and machines. According to Müller (2020), technologies supporting 

Industry 5.0 are characterized by providing human-centric solutions and human-

machine interaction, bio-inspired technologies and smart materials, real-time-based 

digital twins and simulation, cyber-safe data transmission, storage and analysis 

technologies, Artificial Intelligence and Technologies for energy efficiency and 

trustworthy autonomy (See Figure 3). Each of them can unfold its potential when 

combined with others (Müller, 2020). 
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Figure 3. Enabling Technologies for Industry 5.0. 

(Own elaboration, 2024) 

 

Furthermore, integrating technologies, particularly in the context of Industry 5.0, can 

actively support well-being by reducing repetitive tasks, enhancing safety, and 

encouraging fulfilling work environments (Breque, De Nul, & Petridis, 2021). These 

technologies are also anticipated to promote sustainability and create a resilient 

environment. 

 

In conclusion, the European Commission (2021) emphasized that a renewed and 

broader sense of purpose will characterize Industry 5.0. This new approach will 

extend beyond merely producing goods and services for profit, focusing instead on 

promoting prosperity in social, environmental, and societal aspects. However, it is 

essential to recognize that the fifth revolution complements Industry 4.0 by leveraging 

the advancements made during that era rather than replacing it (Breque, De Nul, & 

Petridis, 2021). The new revolution builds upon this foundation to assist in a new era 

of workers' well-being and environmental consciousness, creating a more resilient 

industry.  
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1.3.3 Human-Centric Pillar Focused on Well-being  
 
As previously mentioned, the primary aspects of Industry 5.0 emphasize human 

centricity, sustainability, and resilience. This section focuses specifically on the 

human-centric approach. 

 
While the human-centric approach began gaining prominence during Industry 4.0, as 

exemplified by Romero et al. (2016) concept of “Operator 4.0,” which focuses on 

integrating technologies to enhance worker satisfaction, creativity, and performance 

through human cyber-physical systems, its scope has expanded in the context of 

Industry 5.0. However, human-centric manufacturing is still a relatively new concept 

that requires standardized definitions and frameworks for discussion (Alves, Lima, & 

Gaspar, 2023); (Locatelli, et al., 2024).  

 

In the context of Industry 5.0, the human-centric approach emphasizes enhancing 

human well-being in industrial environments (Alves, Lima, & Gaspar, 2023). The topic 

of well-being has been widely researched by psychologists, sociologists, public health 

experts, and organizations such as the World Health Organization (WHO) and the 

Centers for Disease Control and Prevention (CDC). The WHO states, "Health is a 

complete physical, mental, and social well-being and not merely the absence of 

disease or infirmity" (WHO, 2024) . Similarly, the CDC states that enhancing emotional 

well-being positively affects mental and physical health. It also recognizes that part of 

the benefits of emotional well-being can include being more resilient, and better 

productivity and performance at the workplace (CDC, 2024). 

 

Diener & Seligman (2004) studied a correlation between people with higher well-

being and their higher incomes, as well as better performance at work, finding positive 

results. Furthermore, different studies have demonstrated that when companies 

implement actions that benefit employees’ well-being, their productivity increases 

(Christensen, Øystein Saksvik, & Karanika-Murray, 2017); (Sagar, Garg, & V. 

Basavaraddi, 2023); (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023); 

(Sharpe & Mobasher Fard, 2022); (Henri DiMaria, Peroni, & Sarracino, 2020); (Isham, 

Mair, & Jackson, 2021). 
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Understanding and assessing well-being in work environments often rely on human 

factors (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). In 2022, a model 

was created to categorize human needs in the industrial environment into five levels, 

ranging from basic safety to self-actualization (Lu, et al., 2022) (See Figure 4). The 

sequence of levels illustrates the journey from basic safety to personal growth.  

 

 

 
Figure 4. Industrial Human Needs Pyramid. 

Adapted from: Lu, Y., Zheng, H., Chand, S., Xia, W., Liu, Z., Xu, X., Wang, L., Qin, 

Z. & Bao, J. (2022). Outlook on human-centric manufacturing towards industry 5.0. 

Journal of Manufacturing Systems,62,612-627. 

https://doi.org/10.1016/j.jmsy.2022.02.001 CC BY 4.0 

 
 
Level 1: Safety. At the foundation of the pyramid, worker’s physical safety and legal 

rights are granted, ensuring compliance with labor and safety regulations (Lu, et al., 

2022). Traditionally, it has been managed by protocols that combine physical 

separation between workers and machines with reactive measures that respond to 

incidents only after they have occurred (Robla-Gomez, et al., 2017). However, the 
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future of industrial safety is moving towards proactive protection (Casalino, Bazzi, 

Zanchettin, & Rocco, 2019). This approach involves the creation of intelligent 

environments capable of sensing and predicting worker’s actions in real-time, 

allowing for adaptive safety measures to prevent accidents proactively.  

 

Level 2: Health. At this level, the focus shifts from immediate safety concerns to long-

term physical and mental well-being. This level identifies and addresses risks 

associated with repetitive motions, improper posture, and work practices that may 

lead to musculoskeletal injuries, as opposed to level 1, which is concerned primarily 

with reducing immediate hazards (Lu, et al., 2022). To mitigate these risks, it is 

imperative to implement ergonomic design principles that facilitate the creation of 

static workstations, operational tools, and control interfaces, all aimed at minimizing 

physical fatigue (Boulila, Ayadi, & Mrabet, 2017);(Caputo, Greco, Fera, & Macchiaroli, 

2019). Moreover, psychological well-being is also prioritized at this level. The work 

environment should promote worker engagement by offering meaningful tasks that 

reduce cognitive overload (Lu, et al., 2022). 

 

Level 3: Belonging. Humans are social by nature and need cooperation and 

connection to flourish (Tomasello & Gonzalez-Cabrera, 2017). This level focuses on 

the social aspects of the workplace, acknowledging the need for belonging: 

“Belongingness refers to the emotional need for interpersonal relationships, 

connection, and being part of a group. This includes needs such as friendship, trust, 

acceptance, and appreciation” (Lu, et al., 2022). In a manufacturing context, this 

involves ensuring active and trustworthy collaboration from workers in a human-

machine team and playing valuable roles in the overall success of the team grounded 

in mutual empathy, communication, and shared responsibility for achieving common 

goals (Lu, et al., 2022). Trust, intimacy, acceptance, and mutual appreciation are 

essential components of this level. 

 

Level 4: Esteem. On this level, confidence, strength, self-belief, personal and social 

acceptance, and respect from others are key elements. To achieve self-actualization, 

fulfilling these needs is critical. This transition represents shifting from being “willing 

to work” to feeling “happy to work” (Lu, et al., 2022). Although esteem is an internal 

need, humans are heavily influenced by external factors, such as social validation 



   
 

 24 

and approval. An effective way to reinforce an individual’s sense of esteem is through 

methods like gamification which includes rewards and recognition (Lu, et al., 2022). 

 

Level 5: Self-Actualization. “Self-actualization is about reaching your full potential 

and finding personal fulfillment and growth” (Lu, et al., 2022). At this level, workers 

experience personal satisfaction in their jobs. They have a clear sense of purpose 

and are able to embrace and accept themselves and others, fostering deep and 

meaningful relationships in their daily work. In a manufacturing environment, a 

personalized experience focusing on co-learning and co-exploration is offered, 

allowing bi-directional learning coevolution between humans and machines (Lu, et 

al., 2022).  

 

As previously mentioned, it's crucial to first understand and identify human factors to 

implement a human-centric approach. Even though identifying the most relevant 

human factors in Industry 5.0 can be challenging, some authors have identified six 

that are particularly relevant (Coronado, et al., 2022); (Lu, et al., 2022);  (Crnjac Zizic, 

Mladineo, Gjeldum, & Celent, 2022); (L Russ, et al., 2012). The six mentioned are 

physical fatigue, attention, cognitive workload, stress, trust, and emotional 

assessment. These were later categorized into Level 2, according to Loizaga et al. 

(2023), based on the affected distinct states: physical, cognitive, and psychological, 

as outlined in the Human Need Pyramid. Organizations need to be aware of these 

human factors because they influence not only an individual’s well-being but also 

behavior and performance (Aquino, Jalagat, Kazi, & Nadeem, 2020). 

 

In summary, understanding and addressing human factors is crucial to improving 

well-being. By prioritizing these fundamental elements, organizations can create 

environments that promote employee satisfaction and sustained productivity, leading 

to meaningful and lasting outcomes. Human factors facilitate a Human-Centric 

approach, bringing organizations closer to the new Industry 5.0. 
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1.4 Objectives 

1.4.1 General Objective  
 
Apply a Competitive Technology Intelligence methodology to identify the trends of the 

human-centricity pillar that characterize the Industry 5.0 paradigm and offer 

recommendations for companies looking to adopt this human-centric approach with a 

focus on the influence of workers’ well-being on productivity. 

1.4.2 Specific Objective   
 

• To employ scientometrics as part of the Competitive Technology Intelligence 

process for identifying relevant trends. 

• Offer recommendations to companies on how to become more human-centric 

following this Industry 5.0 pillar. 

 

1.5 Research Questions 
 

In line with the objectives of the previous section, the following table outlines the 

research questions and the corresponding chapter numbers where they are addressed 

(See  

Table 1). 

 

Table 1. Research Questions.   

(Own elaboration, 2024) 

 

Research question 

 

 

Chapter 

 
What are the trends being discussed in the scientific literature 

regarding the human centricity pilar of the Industry 5.0 

paradigm with a focus on the influence of workers’ well-being 

on productivity? 
 

4 

 
What recommendations could companies adopt to become 

more human-centric, following the Industry 5.0 pillar? 
 

5 
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1.6 Scope and Limitations 
 
Although Industry 5.0 is defined by three foundational pillars: human-centricity, 

sustainability, and resilience, this thesis will focus exclusively on the examination of 

the “human-centricity” pillar. The scope of the findings presented in this research 

encompasses scientific papers published in Scopus from January 1, 2019, to October 

1, 2024. A limitation of this research is that not all criteria of the PRISMA methodology 

were comprehensively applied, which may have influenced the assessment of 

potential bias. 

 

1.7 Solution Overview 
This document provides an overview of the current state of the influence of workers' 

well-being on productivity within the context of Industry 5.0. The relevant research 

and trends are obtained using the Competitive Technology Intelligence methodology. 

Furthermore, the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) methodology is integrated into the Competitive Technology 

Intelligence approach to ensure adherence to rigorous systematic review standards 

and enhance the reliability of the findings. 
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Chapter 2: Competitive Technology Intelligence 
Theoretical Framework 

2.1 Introduction 
This chapter presents and describes the chosen methodology for this research, 

Competitive Technology Intelligence (CTI), and it briefly reviews each stage.  

2.2 Competitive Technology Intelligence Methodology 
 
Today, a wealth of information from various sources is available to enhance the 

competitiveness and innovation of research and development (R&D) units. However, 

having the right tools to turn this information into actionable intelligence is crucial. One 

effective approach to meet this challenge is Competitive Technology. According to 

Pellissier and Nenzhelele (2013), it is defined as “a process or practice that produces 

and disseminates actionable intelligence by planning and ethically and legally 

collecting, processing, and analyzing information from both the internal and external 

competitive environment. This process helps decision-makers in their decision-making 

and provides a competitive advantage to the enterprise.” In simpler terms, it is a tool 

that ethically gathers information and transforms raw data into actionable results, 

ultimately offering a competitive edge. Competitive intelligence can help facilitate new 

or increased revenues, the development of new products or services, and savings in 

both cost and time in organizations (Calof & Wright, 2008). 

 

According to Rodriguez-Salvador and Castillo-Valdez (2021), Competitive 

Technology Intelligence (CTI) refers to the application of competitive intelligence (CI) 

in scientific and technological research. Furthermore, CTI can be utilized to predict 

new technologies, develop competitor analyses, forecast market changes, guide 

innovation strategies, and support decision-making in R&D initiatives (Rodriguez-

Salvador & Castillo-Valdez, 2021).  
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This thesis will apply the CTI methodology developed by Rodriguez-Salvador and 

Castillo-Valdez (2021) to identify trends and emerging technologies in Industry 5.0. 

This methodology stands out because it integrates primary and secondary 

information, utilizes quantitative and qualitative metrics, and involves expert 

engagement throughout the entire process. This methodology consists of eight 

interdependent stages that provide and receive feedback from one another (See 

Figure 5). 

 

Figure 5. Competitive Technology Intelligence Methodology Cycle. 

Adapted from: Rodriguez-Salvador, M., & Castillo-Valdez, P.F. (2021). Integrating 

science and technology metrics. *JISIB*, 11(1), 69-77. CC BY 4.0. Available at 

https://ojs.hh.se/index.php/JISIB/article/view/JISIB%20Vol%2011%20Nr%201%202

021 
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2.2.1 Project Planning 
This step establishes important elements, including the main activities, scope, 

participants, roles, resources, and internal policies. In some cases, metrics may also 

be established during this stage, depending on the research objectives. 

 

2.2.2 Identification of Data Sources 
Data constitutes the essential raw material for analysis, while the source denotes the 

origin from which this data is obtained. Data sources are primarily categorized into 

two types: primary sources, which come directly from experts in a specific field, and 

secondary sources, which include scientific papers, technical documents, industry 

reports, and market research (Rodriguez-Salvador & Castillo-Valdez, 2021). 

Additionally, establishing metrics can facilitate the selection of the best data sources.  

 

2.2.3 Search Strategy Design 
In this stage, a clear search strategy is created to find the information within the data 

sources identified in the previous step. When working with primary sources involving 

experts, selecting the appropriate tools for gathering insights is essential. Consider 

using methods such as Delphi studies, focus groups, and interviews. For secondary 

sources, especially those obtained from databases, designing a search query that 

includes the most relevant terms is crucial. These terms can be found in a thorough 

literature review (Rodriguez-Salvador & Castillo-Valdez, 2021). Additionally, different 

query designs are recommended to ensure the collection of the most relevant and 

reliable data. 

 

2.2.4 Data Collection 
This stage involves collecting and organizing all essential information for research 

using primary and secondary data sources. Additionally, the data is analyzed to 

ensure consistency and the right format, a process known as "normalization”.  
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2.2.5 Information Analysis 
Unlike traditional studies, which emphasize primarily the “what” and “how”, this 

methodology seeks to explore further questions (Rodriguez-Salvador & Castillo-

Valdez, 2021), including the five Ws. According to Hart (1996), the five Ws are: “what”, 

“who”, “where”, “when” and “why”. The author notes that this method may act as a 

tool to ensure that the retrieved information aligns with the research needs. 

 

Each data source is assessed differently using its corresponding metrics. For 

example, scientific literature can be evaluated based on publication counts, growth 

rates, impact factors, citations, and collaboration networks. Relevant metrics for 

patents include patent production, classification, inventor distribution, and legal 

status. Social media and websites are gauged through the number of mentions, 

downloads, and user interactions.  

 

2.2.6 Feedback from Experts 
Unlike in other studies, where expert input might be limited or absent, in CTI, 

researchers contact experts throughout the process. The methodology suggests 

involving experts through interviews and questionnaires in the entire CTI process. In 

addition to interviews, experts may participate in methods like Delphi studies and 

focus groups. 

 

2.2.7 Validation and Delivery of Final Results 
At this stage of the process, a final check will ensure the accuracy of the data, 

although validation should occur at every stage. Final adjustments may also be made 

at this point. After this, the validated data will be used to create a report for project 

decision-makers and stakeholders. It is recommended that the report includes both 

quantitative and qualitative results, taking into account the project's preferences and 

needs. 
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2.2.8 Decision Making 
In this phase, the results will be implemented based on the information gathered and 

analyzed in the R&D area. After evaluating and discussing potential outcomes, action 

can be taken. Additionally, it will be essential to define what will be continuously 

monitored, which is a key aspect of this methodology. This stage promotes 

discussion, which is vital for stimulating conversation and facilitating debates about 

these decisions, helping to identify ways to gain competitive advantage. 

 

Chapter 3: Competitive Technology Intelligence Execution  
 

3.1 Introduction  
 
The upcoming chapter will implement the Competitive Technology Intelligence (CTI) 

methodology proposed by Rodriguez-Salvador & Castillo-Valdez (2021). This is done 

step by step, focusing on how well-being influences productivity in the context of 

Industry 5.0. This methodology was previously detailed in Chapter 2 and is the 

foundation of this research. Additionally, scientometrics is utilized as a key component 

of the CTI approach to enhance precision and depth. The Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) methodology is a valuable tool 

to ensure systematic validation and comprehensive data analysis, resulting in a 

transparent, complete, and accurate literature review (Page, et al., 2021). Therefore, 

PRISMA was utilized for scientometric analysis as part of the CTI methodology (See 

Table 2). 

 

While the original specifications of the CTI methodology, as proposed by Rodriguez-

Salvador & Castillo-Valdez (2021), do not explicitly reference the use of PRISMA, this 

research aspires to adhere to stringent systematic review standards and enhance the 

reliability of its findings.  
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Table 2. PRISMA integration on Competitive Technology Intelligence. 

(Own elaboration, 2024) 
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3.2 Project Planning 
 
The research topic has been clearly defined and focused. The general and specific 

objectives and research questions that this thesis aims to address have been 

established. Additionally, the scope of the study has been clarified.  

 

While Chapter 1 covers this stage of the methodology, a review will be provided to 

clarify and enhance understanding of its components. The research topic centers on 

the influence of workers’ well-being on productivity in the context of Industry 5.0. In 

general, this research aims to find trends related to the human-centric pillar of 

Industry 5.0 and provide recommendations for companies seeking to adopt this 

approach.  

 

Furthermore, the research has two specific objectives: first, to employ scientometrics 

as part of the Competitive Technology Intelligence process to identify relevant trends, 

and second, to offer recommendations to companies interested in becoming more 

human-centric in accordance with the principle of Industry 5.0. 

 

This research aims to answer the following questions: 

Q1: What are the trends being discussed in the scientific literature regarding the 

human centricity pilar of the Industry 5.0 paradigm with a focus on the influence of 

workers’ well-being on productivity? 

 

Q2: What recommendations could companies adopt to become more human-centric, 

following the Industry 5.0 pillar? 

 

Ultimately, Industry 5.0 is characterized by three pillars: human-centricity, 

sustainability, and resilience. This thesis specifically focuses on human-centricity, 

which defines the scope of this research. The findings are limited to scientific papers 

published in the Scopus database from 01/01/2019 to 01/10/2024. 
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3.3 Identification of Data Sources 
 
This research incorporates insights from Industry 4.0 and Industry 5.0 experts as 

primary sources and scientific literature as secondary sources, in accordance with 

the CTI methodology, which advocates for using both sources. Experts in the field of 

Competitive Technology Intelligence also participated.  

 

A specific timeframe was defined between 01/01/2019 and 01/10/2024 due to the 

“Industry 5.0” official creation in 2019 by The European Commission (Breque, De Nul, 

& Petridis, 2021). The scientific literature was retrieved from Scopus at the 

recommendation of the CTI expert due to its high reliability and analytical capacity. 

Scopus indexes 24.6+ million open-access journals and covers a wide range of 

disciplines: science, technology, medicine, social sciences, and arts and humanities 

(Elsevier, 2024). Moreover, in a comparison of the databases Google Scholar, Web 

of Science, and Scopus, Scopus demonstrated the highest percentage of papers and 

citations (Harzing & Alakangas, 2016). The database access was granted by 

Biblioteca TEC 21 of Tecnologico de Monterrey.  

 

3.4 Search Strategy Design  

3.4.1 Primary Source Search Strategy Design 
 
In accordance with the CTI methodology proposed by Rodriguez-Salvador & Castillo-

Valdez (2021), the collection of insights from experts is a fundamental aspect of the 

process. Moreover, it is important to thoughtfully select the appropriate tools for 

gathering this information based on the specific research objectives.  

 

One key objective of this research is to offer recommendations for organizations 

seeking to embrace a human-centric approach that emphasizes the influence of 

workers’ well-being on productivity. To support this offering, it's essential to gather 

insights from experts regarding the information presented in this research. This will 

help assess the relevance of the results and identify potential interests for 
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organizations that need to make decisions in the context of Industry 5.0, with an 

emphasis on the influence of workers’ well-being on productivity. 

 

According to Masadeh (2012), a focus group is a qualitative research methodology 

that involves a structured discussion with a small group of individuals. One person or 

a team of moderators facilitates this discussion, which aims to generate qualitative 

data on a specific topic of interest. The author further emphasizes that focus groups 

are an effective and efficient method for data collection, particularly when involving a 

small group of participants, typically four to twelve individuals. 

 

Due to the novelty of the term Industry 5.0 in research and the limited number of 

experts in the field, a focus group is considered the most appropriate tool for this 

study. This thesis proposes conducting a focus group with five Industry 5.0 experts 

and using a questionnaire (See Table 3) to ensure the relevance of the results, which 

will serve as the foundation for the recommendations offered.  

 

Table 3. Focus Group Questions with Experts. 

(Own elaboration, 2024) 

 
Participant 

 

 
Question 

1 

Is    the     information    presented   easy 

to understand? 

Is the information presented sufficient for 

decision-making? 

Is the information presented useful for 

decision-making? 

Is there any additional information that 

would you find needed for decision-

making? 

2 

Is the information presented easy to 

understand? 

Is the information presented sufficient 

for decision-making? 

Is the information presented useful for 

decision-making? 
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Is there any additional information that 

would you find needed for decision-

making? 

3 

Is the information presented easy to 

understand? 

Is the information presented sufficient 

for decision-making? 

Is the information presented useful for 

decision-making? 

Is there any additional information that 

would you find needed for decision-

making? 

4 

Is the information presented easy to 

understand? 

Is the information presented sufficient 

for decision-making? 

Is the information presented useful for 

decision-making? 

Is there any additional information that 

would you find needed for decision-

making? 

5 

Is the information presented easy to 

understand? 

Is the information presented sufficient 

for decision-making? 

Is the information presented useful for 

decision-making? 

Is there any additional information that 

would you find needed for decision-

making? 

 

3.4.2 Secondary Source Search Strategy Design 
 

The CTI methodology proposed by Rodriguez-Salvador & Castillo-Valdez (2021) 

recommends identifying keywords through a literature review. The PRISMA 

methodology advocates using the PICO framework. However, both frameworks have 

limitations. For example, keyword selection through a literature review relies heavily 

on databases, while PICO relies heavily on the discretion of the research expertise 

(Leem, Shin, Kim, & Ryul Shim, 2024).  
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To fill this gap, this research proposes to develop a search strategy through a literature 

review in order to establish a solid basis for the PICO framework. This enhances the 

robustness of the secondary source search strategy and improves the reliability of the 

search results. 

 

3.4.2.1 Keyword Selection through Literature Review 
 
During this phase, a search strategy was developed to find the most relevant 

information. This strategy involved identifying the most suitable terms, which were 

determined through a preliminary literature review in the Scopus database. The 

decision to include or exclude a keyword was made through an iterative process. Due 

to the European Commission's official mention of “Industry 5.0” in 2019, a specific 

timeframe was defined between 01/01/2019 and 01/10/2024 (Breque, De Nul, & 

Petridis, 2021).  

 

The keywords were divided into three core categories (See Table 4). 

- Industry 5.0 terms. 

- well-being terms. 

- productivity terms. 

 

These core categories were considered as keywords to search on Scopus, focusing 

on literature published between 01/01/2019 and 10/01/2024. For each category, 20 

papers were selected from the Scopus database, 10 representing high-impact 

publications and 10 representing the most recent publications within the past five 

years. The 'Sort by' function in Scopus was used, with 'Relevance' for high-impact 

publications and 'Date (newest)' for the most recent ones. The objective was to 

ensure the inclusion of the latest and most relevant terminology. The review 

considered important sections of each paper, including the title, keywords, and 

abstracts. This approach revealed variations of the terminology and commonly used 

synonyms. 
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The following table presents the core categories and their number of results in Scopus 

from 01/01/2019 to 01/10/2024, followed by the word variations identified in the 

previously explained literature review strategy. 

 

Table 4. Analysis of the Core Terms "Industry 5.0", "well-being", and "productivity". 

(Own elaboration, 2024) 

 
 

Numbers of results corresponding between 
01/01/2019 – 01/10/2024 

 

Core Keyword Scopus 

Industry 5.0 

TITLE-ABS-KEY ( "Industry 5.0" ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 
2,401 

TITLE-ABS-KEY ( "Fifth Revolution" ) AND PUBYEAR 

> 2018 AND PUBYEAR < 2025 
7 

TITLE-ABS-KEY ( "Fifth Industrial Revolution" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
230 

TITLE-ABS-KEY ( "I5.0 " ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 
119 

TITLE-ABS-KEY ( "human-centric manufacturing" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 2025 
76 

TITLE-ABS-KEY ( "IR 5.0" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 
21 

Well-being 

TITLE-ABS-KEY ( "well ? being" OR "wellbeing" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
210,249 

TITLE-ABS-KEY ( "welfare*" OR "well?fare*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
93,321 

TITLE-ABS-KEY ( "human ? factor*" ) AND PUBYEAR 

> 2018 AND PUBYEAR < 2025 
16,634 

TITLE-ABS-KEY ( "Health" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 
2,263,376 

productivity 
TITLE-ABS-KEY ( "productiv*" ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 
271,128 
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TITLE-ABS-KEY ( "Efficien*" OR "Effectiv*") AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
5,136,909 

TITLE-ABS-KEY ( "Performance" ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 
3,253,593 

 

 

The next phase of the search strategy involved conducting a comparative analysis 

between “Industry 5.0” and “well-being.” Combining the keywords from Table 4. 

Analysis of the Core Terms, an analysis was carried out to explore the relationship 

between “Industry 5.0” and “well-being” (See Table 5). This step aimed to ensure that 

the selected literature sufficiently represented the intersection of both topics.  

 

Table 5. Combination of "Industry 5.0" & "well-being" terms. 

(Own elaboration, 2024) 

 
 

Numbers of results corresponding between 
01/01/2019 – 01/10/2024 

 

Keyword Result Scopus 
TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"well ? being" OR "wellbeing" ) ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
186 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"welfare*" OR "well?fare*" ) ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
24 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"human ? factor*" ) ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 
122 

TITLE-ABS-KEY ( "Industry 5.0" AND 

"health" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 
157 

TITLE-ABS-KEY ( "Fifth Revolution" AND ( 

"well ? being" OR "wellbeing" ) ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
0 
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TITLE-ABS-KEY ( "Fifth Revolution" AND ( 

"welfare*" OR "well?fare*" ) ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "Fifth Revolution" AND ( 

"human ? factor*" ) ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "Fifth Revolution" AND 

"health" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 
3 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "well ? being" OR 

"wellbeing" ) ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

14 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "welfare*" OR 

"well?fare*" ) ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "human ? factor*" ) ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

7 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND "health" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

14 

TITLE-ABS-KEY ( "I5.0" AND ( "well ? 

being" OR "wellbeing" ) ) AND PUBYEAR 

> 2018 AND PUBYEAR < 2025 

14 

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*" 

OR "well?fare*" ) ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "I5.0" AND ( "human ? 

factor*" ) ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

8 
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TITLE-ABS-KEY ( "I5.0" AND "health" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 
9 

TITLE-ABS-KEY ( "Human-centric 

manufacturing" AND ( "well ? being" OR 

"wellbeing" ) ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

18 

TITLE-ABS-KEY ( "Human-centric 

manufacturing" AND ( "welfare*" OR 

"well?fare*" ) ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

1 

TITLE-ABS-KEY ( "Human-Centric 

manufacturing" AND ( "human ? factor*" ) ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

4 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND "health" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
8 

TITLE-ABS-KEY ( "IR 5.0" AND ( "well ? 

being" OR "wellbeing" ) ) AND PUBYEAR 

> 2018 AND PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "IR 5.0" AND ( 

"welfare*" OR "well?fare*" ) ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "IR 5.0" AND ( "human 

? factor*" ) ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "IR 5.0" AND "health" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 
1 

 

 

To examine the keyword’s relevance to this study's objective, a more detailed 

evaluation was undertaken when the combinations between “Industry 5.0” and “well-
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being” and their synonyms had at most five papers (See Table 5). This involved a 

thorough review of the abstract, introduction, and discussion sections. 

 

From the four combinations with the keyword “IR 5.0” only one resulted in a single 

paper. Upon analysis, it became clear that this paper did not contribute to the 

objectives of this research. Among the four combinations with the keyword “Fifth 

Revolution,” only one resulted in three papers. However, these papers did not 

significantly contribute to the research and were subsequently excluded.  

 

As a result, the keywords “Fifth Revolution” and “IR 5.0” were excluded, as their 

associated papers did not contribute significantly to the research or show any results 

(See Table 6).  

Table 6. Reasoning for Exclusion of Terms. 

(Own elaboration, 2024) 

 
Combination Reference Reasoning 

TITLE-ABS-KEY ( "Fifth 

Revolution" AND 

"health" ) AND 

PUBYEAR > 2018 AND 

PUBYEAR < 2025 

Sultan, S., Acharya, Y., Zayed, 

O., Elzomour, H., Parodi, J. C., 

Soliman, O., & Hynes, N. (2022). 

Is the cardiovascular specialist 

ready for the fifth revolution? The 

role of artificial intelligence, 

machine learning, big data 

analysis, intelligent swarming, 

and knowledge-centered service 

on the future of global 

cardiovascular healthcare 

delivery. Journal of Endovascular 

Therapy, 30(6), 877-884. 

The paper focuses on 

how technologies will 

shape cardiovascular 

medicine, which is not 

the topic of this 

research. 

 

Shubhangi, C., Ankit, T., Qasim, 

M., R.S, W., & Prince, S. (2023). 

A Critical Review on Industry 5.0 

and Its Medical Applications. 2nd 

International Conference on 

It focuses on Industry 

5.0 for medical 

applications, which is 

not the topic of this 

research. 
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Industrial and Manufacturing 

Systems, CIMS 2021. 251-261. 

 

Montgomery, D. (2020). Soil 

health and the revolutionary 

potential of Conservation 

Agriculture. Rethinking Food and 

Agriculture: New Ways Forward. 

Pages 219 - 229 

It focuses on the health 

of the soil, which is not 

the topic of this 

research. 

TITLE-ABS-KEY ( "IR 

5.0" AND "health" ) 

AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

Chen, Y., Chen, Y.-q., & Zhang, 

Q. (2022). Association between 

vitamin D and insulin resistance 

in adults with latent tuberculosis 

infection: Results from the 

National Health and Nutrition 

Examination Survey (NHANES) 

2011–2012. Journal of Infection 

and Public Health, 15(8), 930–

935. 

In this paper IR referes 

to insuline resistance, 

which is not the topic of 

this research. 

 

 
Therefore, the preliminary search query kept only the keywords that significantly 

contributed to the focus of workers' well-being in the context of Industry 5.0 (See 

Table 7). 

Table 7. Preliminary Search Query. 

(Own elaboration, 2024) 

 
Query Result 

TITLE-ABS-KEY ( ( "Industry 5.0" OR "Fifth Industrial Revolution" 

OR "I5.0" OR "Human-centric manufacturing" ) AND ( ( "well ? 

being" OR "wellbeing" ) OR ( "welfare*" OR "well?fare*" ) OR ( 

"human ? factor*" ) OR ( "health" ) ) ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

430 

 

The final step of the search strategy involved performing a comparative analysis 

combining the keywords from Table 4. In this case, the keywords related to 
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"productivity" were added along with the "Industry 5.0" and "well-being" previous 

combinations shown in Table 5. The combinations with “Industry 5.0”, “well-being” 

and “productivity” are presented in Table 8. This step aimed to ensure that the 

selected literature sufficiently represented the intersection of well-being and 

productivity in the context of Industry 5.0. 

Table 8. Combination of "Industry 5.0", "well-being" & "productivity" terms. 

(Own elaboration, 2024) 

 
 

Numbers of results corresponding between 
01/01/2019 – 01/10/2024 

 

Keyword Result Scopus 
TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"well ? being" OR "wellbeing" ) AND 

"productiv*" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

43 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"welfare*" OR "well?fare*" ) AND 

"productiv*" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

2 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"human ? factor*" ) AND "productiv*" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

25 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"health" ) AND "productiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
22 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"well ? being" OR "wellbeing" ) AND 

"efficiency" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

44 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"welfare*" OR "well?fare*" ) AND 
4 
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"efficiency" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"human ? factor*" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
24 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"health" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
31 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"well ? being" OR "wellbeing" ) AND 

"performance" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

52 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"welfare*" OR "well?fare*" ) AND 

"performance" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

4 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"human ? factor*" ) AND "performance" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

42 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"health*" ) AND "performance" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
34 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"well ? being" OR "wellbeing" ) AND 

"Effectiv*" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

24 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"welfare*" OR "well?fare*" ) AND 

"Effectiv*" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

3 

TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"human ? factor*" ) AND "Effectiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
15 
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TITLE-ABS-KEY ( "Industry 5.0" AND ( 

"health*" ) AND "Effectiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
42 

  

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "well ? being" OR 

"wellbeing" ) AND "productiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

4 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "welfare*" OR 

"well?fare*" ) AND "productiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "human ? factor*" ) 

AND "productiv*" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

2 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "health" ) AND 

"productiv*" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

2 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "well ? being" OR 

"wellbeing" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

3 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "welfare*" OR 

"well?fare*" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "human ? factor*" ) 

AND "efficiency" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

3 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "health" ) AND 
2 
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"efficiency" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "well ? being" OR 

"wellbeing" ) AND "performance" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

3 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "welfare*" OR 

"well?fare*" ) AND "performance" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "human ? factor*" ) 

AND "performance" ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 

1 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "health" ) AND 

"performance" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

2 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "well ? being" OR 

"wellbeing" ) AND "Effectiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

1 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "welfare*" OR 

"well?fare*" ) AND "Effectiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "human ? factor*" ) 

AND "Effectiv*" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

1 

TITLE-ABS-KEY ( "Fifth Industrial 

Revolution" AND ( "human ? factor*" ) 

AND "Health" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

1 
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TITLE-ABS-KEY ( "I5.0" AND ( "well ? 

being" OR "wellbeing" ) AND "productiv*" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

5 

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*" 

OR "well?fare*" ) AND "productiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "I5.0" AND ( "human ? 

factor*" ) AND "productiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
3 

TITLE-ABS-KEY ( "I5.0" AND ( "health" ) 

AND "productiv*" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 
2 

TITLE-ABS-KEY ( "I5.0" AND ( "well ? 

being" OR "wellbeing" ) AND "efficiency" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

5 

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*" 

OR "well?fare*" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "I5.0" AND ( "human ? 

factor*" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
1 

TITLE-ABS-KEY ( "I5.0" AND ( "health" ) 

AND "efficiency" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 
1 

TITLE-ABS-KEY ( "I5.0" AND ( "well ? 

being" OR "wellbeing" ) AND 

"Performance" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

2 

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*" 

OR "well?fare*" ) AND "Performance" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

0 
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TITLE-ABS-KEY ( "I5.0" AND ( "human ? 

factor*" ) AND "Performance" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
2 

TITLE-ABS-KEY ( "I5.0" AND ( "health" ) 

AND "Performance" ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 
1 

TITLE-ABS-KEY ( "I5.0" AND ( "well ? 

being" OR "wellbeing" ) AND "Effectiv*" ) 

AND PUBYEAR > 2018 AND PUBYEAR < 

2025 

3 

TITLE-ABS-KEY ( "I5.0" AND ( "welfare*" 

OR "well?fare*" ) AND "Effectiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 
0 

TITLE-ABS-KEY ( "I5.0" AND ( "human ? 

factor*" ) AND "Effectiv*" ) AND PUBYEAR 

&GT; 2018 AND PUBYEAR &LT; 2025 
1 

TITLE-ABS-KEY ( "I5.0" AND ( "health" ) 

AND "Effectiv*" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 
1 

  

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "well ? being" OR 

"wellbeing" ) AND "productiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

3 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "welfare*" OR 

"well?fare*" ) AND "productiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "human ? factor*" ) 

AND "productiv*" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "health" ) AND 
2 
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"productiv*" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "well ? being" OR 

"wellbeing" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

3 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "welfare*" OR 

"well?fare*" ) AND "efficiency" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "human ? factor*" ) 

AND "efficiency" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "health" ) AND 

"efficiency" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

3 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "well ? being" OR 

"wellbeing" ) AND "Performance" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

7 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "welfare*" OR 

"well?fare*" ) AND "Performance" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "human ? factor*" ) 

AND "Performance" ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 

0 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "health" ) AND 

"Performance" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

3 
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TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "well ? being" OR 

"wellbeing" ) AND "Effectiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

2 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "welfare*" OR 

"well?fare*" ) AND "Effectiv*" ) AND 

PUBYEAR > 2018 AND PUBYEAR < 2025 

1 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "human ? factor*" ) 

AND "Effectiv*" ) AND PUBYEAR > 2018 

AND PUBYEAR < 2025 

1 

TITLE-ABS-KEY ( "Human-Centric 

Manufacturing" AND ( "health" ) AND 

"Effectiv*" ) AND PUBYEAR > 2018 AND 

PUBYEAR < 2025 

1 

 
 

To examine the keyword’s relevance for the objective of this study, a more detailed 

evaluation was undertaken when the combinations between “Industry 5.0”, “well-

being”, and “productivity” and their synonyms had at most five papers. This involved 

thoroughly reviewing the abstract, introduction, and discussion sections. As a result 

of this evaluation, no changes were made to the keywords.  

 

3.4.2.2 Keyword Selection with PEO Framework 
 
The PICO framework, which stands for Population, Intervention, Comparison, and 

Outcome, is well-known for its effectiveness in framing and answering clinical and 

healthcare questions (Palaskar, 2017). Additionally, it can be used to develop 

literature search strategies by breaking down search terms or concepts into PICO 

elements (Palaskar, 2017). However, there are some cases where the PICO 

framework cannot be directly applied due to the research scope and design (Topor, 

et al., 2021).  
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Several alternatives to the traditional PICO framework have been developed to 

address its limitations (Booth, et al., 2019). Some examples include SPICE–Setting, 

Perspective, Intervention, Comparison, and Evaluation—, SPIDER—Sample, 

Phenomenon of Interest, Design, Evaluation, and Research type— (Stern, Jordan, & 

McArthur, 2014), and PEO—Population, Exposure, Outcome— (Aboagye, et al., 

2021).  

 

Unlike the PICO framework, which focuses on comparing interventions and their 

outcomes, the PEO framework explores experiences and outcomes related to 

exposure. Since worker well-being is closely related to their experiences and 

perceptions, and productivity is viewed as the outcome of these experiences, the 

PEO framework is a more suitable choice. The keywords in the PEO framework are 

derived from the prior section, where they were chosen based on a literature review 

(See Table 9). 

 

Table 9. Keyword Selection via the PEO Framework. 

(Own elaboration, 2024) 

 

PEO 
Element 

Domain: Human-Centricity focused 
on well-being and productivity 
within the Industry 5.0 Paradigm 

 Keywords Search 
Strategies 

Population 
Manufacturing 
environments 
aiming to adopt 
Industry 5.0 

"Industry 5.0" OR 
"Fifth Industrial 
Revolution" OR 
"I5.0" OR "Human-
centric 
manufacturing" 

Exposure 
 
Human Factors 
focused on well-
being  

( "well ? being" OR 
"wellbeing" ) OR ( 
"welfare*" OR 
"well?fare*" ) OR ( 
"human ? factor*" ) 
OR ( "health" ) 

Outcome 
Improvements in 
worker well-being 
and productivity 

 ( "productiv*" OR 
"efficiency" OR 
"performance" OR 
"Effectiv*" ) 

 

3.4.2.3 Query Construction and Execution 
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After the keyword selection process, a query with results focusing on Industry 5.0, 

well-being, and productivity is produced. The results were limited to the dates 

between 01/01/2019 and 01/10/2024. The following table presents the final query and 

its results (See Table 10). 

Table 10. Final Query. 

(Own elaboration, 2024) 

 
Query Result 

TITLE-ABS-KEY ( ( "Industry 5.0" OR "Fifth Industrial Revolution" 

OR "I5.0" OR "Human-centric manufacturing" ) AND ( ( "well ? 

being" OR "wellbeing" ) OR ( "welfare*" OR "well?fare*" ) OR ( 

"human ? factor*" ) OR ( "health" ) ) AND ( "productiv*" OR 

"efficiency" OR "performance" OR "Effectiv*" ) ) AND PUBYEAR > 

2018 AND PUBYEAR < 2025 

223 

 
 

3.5 Data Collection  
 
The previous validated query produced 223 results in Scopus, as shown in the last 

section (See Table 10). These results include journals, books, and conference papers 

published between 01/01/2019 and 1/10/2024. No duplicate findings were eliminated 

since only one database was used. The remaining publications were screened based 

on their titles, keywords, and abstract information. The inclusion criteria required 

publications to be all in the English language, publications to be consistent with the 

research topic of workers’ well-being and productivity within the context of Industry 

5.0, and the publication stage must be final in the Scopus function of the “Publication 

stage.” Commonly, a publication labeled as “Final” ensures that the article has gone 

through the entire peer-review process and has been formally accepted (PLOS, 

2024).  

 

Moreover, exclusion criteria encompassed publications on well-being and productivity 

that are not aligned with the Industry 5.0 paradigm, publications primarily pertaining 

to the healthcare sector, and publications focused mainly on the sustainability or 



   
 

 54 

resilience pillars of Industry 5.0. As a result, the number of papers decreased to 149 

(See Figure 6).  

 
Figure 6. Flow Diagram based on PRISMA Methodology. 

(Own elaboration, 2024) 

 

3.6 Information Analysis  
 
An information analysis will be undertaken using the five Ws framework previously 

introduced in subchapter 2.2.5, Chapter 2. The main aim is to ensure that the 

information obtained aligns with the research objectives while also uncovering insights 

that may not be clearly visible in the raw data. The application of the five Ws in this 

research is as follows: When—to analyze temporal patterns; Where—to identify the 

geographical distribution of research effort in the field; Who—to determine the key 
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contributors and stakeholders; What—to identify the most frequently mentioned 

keywords and types of publications obtained; and Why—to identify the most relevant 

human factors and trends in Industry 5.0. By applying this framework, the goal is to 

achieve a detailed and comprehensive understanding of the data at hand. 

 

3.6.1 When 
 
The publication years are critical for comprehending the evolution of research interest 

over time. The subsequent chart illustrates the annual publication production through 

the years (See Figure 7). The chart encompasses only complete years. Given that 

data collection for this research concluded in October 2024, the year 2024 has been 

omitted to avoid potentially misleading results. 

 

 

Figure 7. Number of Publications per Year. 

(Own elaboration, 2024) 

 
 
As observed, there is a consistent increase from 2019 to 2021, indicating an 

exploratory phase in this field, while the sharp rise from 2022 to 2023 implies 

accelerated research engagement. This corresponds with the period when the 

European Commission officially introduced Industry 5.0 in 2019. Furthermore, this 

notable increase may indicate a transition from exploring concepts to actively 
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adopting and implementing the principles of Industry 5.0. Decision-makers can view 

this as a sign of growing opportunities for collaboration, funding, and innovation in 

this rapidly expanding sector. 

 

3.6.2 Where 
 
Subsequently, the publications were organized according to the first author's country 

of affiliation in order to identify the geographical distribution of research efforts within 

the field. The chart below displays the publications by the country of the first author 

(See Figure 8). 

 

 
Figure 8. Number of Publications by Country. 

(Own elaboration, 2024) 

 

 

As a result, the ten leading countries with publications related to the relationship 

between well-being and productivity in the Industry 5.0 field are Italy (52), Germany 

(11), France (11), Spain (11), Sweden (10), China (10), the United States (9), India 

(7), the United Kingdom (6), and Portugal (6).  

 

This chart shows Italy's dominance as the primary contributor of papers in the field, 

accounting for 35%. This underlines its significant role in advancing research on the 
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influence of workers’ well-being on productivity within Industry 5.0. This finding is 

consistent with Italy's pioneering role in the implementation of Industry 5.0 initiatives. 

For instance, the project “Piano Transizione Industry 5.0," which was launched in 

March 2022 (Ministero delle Imprese e del Made in Italy, 2022). Furthermore, another 

significant factor that may have served as a catalyst for Italy to lead Industry 5.0 

focused on the influence of workers’ well-being on productivity, is that it was the first 

European country to be impacted by COVID-19 in January 2020 (Masino & Enria, 

2023).  

 

Furthermore, Germany, France, and Spain each account for 7%, establishing a 

significant secondary group of contributors. This underscores European leadership in 

the domain, as seven of the top ten countries are situated in Europe. Additionally, 

these countries demonstrate a substantial level of industrial development, thereby 

presenting considerable potential for research and innovation. 

 

In Asia, China and India emerge as notable contributors, while the United States 

leads in the Americas. This regional distribution underscores the potential for global 

collaboration regarding workers' well-being and its influence on productivity within the 

context of Industry 5.0. 

 

3.6.3 Who 
 
The primary authors will be identified to highlight the key contributors in Figure 9, and 

the funding sponsors will be identified to highlight key stakeholders in Figure 10. The 

following chart presents the primary contributors (See Figure 9). 
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Figure 9. Publications by Author. 

(Own elaboration, 2024) 

 
 
The bar chart indicates that Faccio, M. and Granata, I. are the most active contributors 

to research on the influence of workers’ well-being on productivity in the context of 

Industry 5.0. Organizations and researchers looking to deepen their understanding 

or establish collaborations in this area should consider engaging with these key 

contributors to enhance their expertise and insights. Moreover, the consistent 

contributions from authors like Peruzzini, M., Chand, S., and Grandi, F. showcase a 

strong secondary tier of expertise, highlighting a robust network of researchers in the 

field. Furthermore, these findings can help decision-makers identify leaders and 

potential collaborators in innovation projects. 

 

Additionally, the following treemap displays the ten main funding sponsors (See 

Figure 10). 
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Figure 10. Number of Publications by Funding Sponsor. 

(Own elaboration, 2024) 

 

 

Evidently, the European Commission plays a dominant role in funding research 

related to the influence of workers’ well-being on productivity in Industry 5.0 (See 

Figure 10). Notably, it contributes to 59% of the publications through initiatives such 

as the Horizon 2020 Framework Programme (Commission, Horizon 2020, 2020) and 

the European Regional Development Fund (Commission, European Regional 

Development Fund, 2024). This significant funding dominance can be attributed to 

the European Commission’s leadership in defining the concept of Industry 5.0. 

Additionally, this substantial European funding is closely connected to the 

prominence of European countries in well-being and productivity within the context of 

Industry 5.0.   

 

3.6.4 What 
 
Figure 11 highlights key topics in this research field and frequently mentioned 

keywords. Meanwhile, Figure 12 presents an overview of the various types of 

publications and categorizes them accordingly. 
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A word cloud (see Figure 11) illustrates the most commonly referenced topics. This 

word cloud was created using keywords extracted from the 149 analyzed papers. It 

was created using an online tool called “wordcloud.com” (Schoonhoven, 2003), and 

it highlights the most prominent topics in the research field.  

 

 
Figure 11. Word Cloud Distribution. 

(Own elaboration, 2024) 

 

Keywords like ‘Industry 5.0’ and ‘human factors’ are crucial elements of the discourse, 

emphasizing their importance in shaping the focus of current studies. These insights 

also enabled the validation of the alignment between the research objectives and the 

information gathered.  

 

Furthermore, the presence of keywords such as ‘human-robot collaboration’, ‘virtual 

reality, and ‘augmented reality’ in the cloud highlights a significant interest in 

technology-driven approaches to enhancing well-being within the context of Industry 

5.0. The word cloud provides valuable insights by emphasizing key research priorities 

and emerging technologies. For instance, the prominence of terms like ‘cobots,’ 

‘digital twin,’ and ‘ergonomics’ underscores areas where resources can be allocated 

to promote innovation and collaboration, especially concerning the influence of 

workers’ well-being on productivity in Industry 5.0. Additionally, it identifies potential 
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gaps in topics that receive less focus, encouraging further examination of these 

lesser-emphasized areas.  

 

Furthermore, the doughnut chart provides an insightful overview of the publications 

organized by type. (See Figure 12). 

 

 
Figure 12. Publication Type Distribution. 

(Own elaboration, 2024) 

 

The doughnut chart offers a clear overview of the distribution of document types in 

the analyzed research papers. Research articles dominate the landscape, accounting 

for 53% of the total, emphasizing the academic field's strong reliance on peer-

reviewed articles for credible information. Conference papers closely follow at 40%, 

reflecting the crucial role that conferences play in sharing the latest trends and 

fostering discussions in the field. Finally, book chapters contribute a modest 7% to 

the overall mix. The substantial presence of articles highlights the importance of 

engaging with peer-reviewed literature for reliable insights, while the high percentage 

of conference papers indicates the need to attend conferences to stay informed and 

make valuable connections. 

 

53%40%

7%

Article Conference	Paper Book	Chapter



   
 

 62 

3.6.5 Why 
 

Figure 13 illustrates the most relevant human factors in Industry 5.0, and Figure 14 

highlights the latest technological trends. The following pie chart categorizes these key 

human factors. 

 

 
Figure 13. Human Factors. 

(Own elaboration, 2024) 

 
 
The chart highlights the distribution of six key human factors in Industry 5.0. Notably, 

‘Physical Fatigue’ and ‘Cognitive Workload’ stand out as the most significant, with 39 

and 34 publications in these areas, respectively. These two factors account for half of 

the total publications, underscoring their prominence in the field. This suggests that 

physical strain and mental load are critical challenges impacting worker well-being and 

productivity, making them key priorities for intervention.  

 

Furthermore, ‘Trust’ also stands out as a crucial element, highlighted by 30 

publications in this area. This underscores the goals of Industry 5.0, which focuses on 

fostering closer collaboration between humans and robots. It’s essential to understand 

that Industry 5.0 aims to cultivate a human-centric environment where robots are not 

merely tools but rather collaborative partners that enhance human potential. 
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Lastly, even though ‘Attention’ and ‘Stress’ make up a smaller portion of the pie chart, 

it's crucial not to underestimate them, as they may be underlying issues that affect 

other factors. 

 

Furthermore, the latest technological trends are presented in the pie chart below (See 

Figure 14). 

 

 
Figure 14. Technological Trends. 

(Own elaboration, 2024) 

 
 
The predominant trend, encapsulated in 48 publications, underscores the integration 

of technology to modify and optimize work and workplace environments. This 

enhances well-being, which in turn contributes to heightened productivity levels among 

the workforce. This trend evidences a robust commitment to creating adaptive work 

and environmental settings that prioritize the holistic well-being of employees.  

 

Another notable trend, characterized by 40 publications, centers on facilitating 

effective and natural communication between robots and humans, thereby facilitating 

seamless human-robot collaboration within the framework of Industry 5.0. Following 
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closely, a total of 39 publications suggest a burgeoning interest in the design of 

customized technology design to meet operators’ individual needs. Lastly, while it 

constitutes a smaller segment of the overall analysis, real-time monitoring 

technologies that provide accurate feedback are attracting increased attention, 

thereby presenting a promising opportunity for further exploration.  

 

As demonstrated in the analysis above, Europe has emerged as the primary region 

for researching the Industry 5.0 human-centric approach, focusing on well-being and 

productivity, driven by the European Commission's financial support. Italy is currently 

at the forefront, although global players like China and the United States are also 

making significant contributions. The rise in publications since 2022 indicates a 

continually increasing interest and investment in this research area. Moreover, 

technologies that promote human-robot collaboration, such as virtual and augmented 

reality, are gaining traction in the field of Industry 5.0. 

 

3.6.6 Literature Review Results 
 
This section offers a concise summary of each paper. This step aligns with the 

PRISMA methodology, which seeks to emphasize relevant characteristics and support 

the comparison of study methodologies and results. Furthermore, it helps in 

recognizing patterns, similarities, and differences among the studies. 

 

Result 1: 
 
Digital Twin Technology of Human–Machine Integration in Cross-Belt Sorting System 

by Qu et al. (2024) 

 

This research examines the increased workload imposed on workers in the Chinese 

express delivery sector in light of significant automation. It also presents a human-

machine integrated digital twin framework designed to balance employee well-being 

with productivity. By integrating physiological data to monitor operator fatigue and 

utilizing real-time simulations for optimization, this framework enhances worker 

welfare and boosts the efficiency of cross-belt sorting systems. 
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Result 2: 
 
Human-centric robotic assembly line design: a fuzzy inference system approach for 

adaptive workload management by Ghorbani et al. (2024). 

 

This study highlights the shift to Industry 5.0 by introducing an innovative fatigue model 

that focuses on ergonomic risk management in robotic assembly lines. The model 

employs a fuzzy inference system to address ergonomic complexities. It evaluates 

fatigue at both the task and worker levels, incorporating supportive robots to enhance 

productivity and well-being. Empirical validation demonstrates its effectiveness in 

reducing system costs by up to 47% while lowering fatigue and ergonomic risks. This 

underscores Industry 5.0's dedication to sustainable productivity and worker 

satisfaction. 

 

Result 3: 
 

Achieving productivity and operator well-being: a dynamic task allocation strategy for 

collaborative assembly systems in Industry 5.0 by Calzavara et al. (2024). 

 

This paper investigates the role of collaborative robots (cobots) in enhancing 

productivity while simultaneously safeguarding worker well-being within the framework 

of Industry 5.0. It emphasizes the importance of designing work environments with a 

human-centric paradigm, considering critical factors such as ergonomics, mental 

workload, and individual competencies to optimize both human performance and 

systemic efficiency. Furthermore, the study introduces a flexible, real-time multi-

objective task allocation strategy for collaborative systems that adjusts the workload 

distribution between the human operator and the cobot in accordance with the 

operator's stress or energy levels. This methodology contributes to the equilibrium 

between system performance and employee well-being by mitigating stress, 

consequently leading to an overall increase in productivity. 

 

Result 4: 
 
A framework for human-robot collaboration enhanced by preference learning and 

ergonomics by Mergalli Falerni et al. (2024). 
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This study concentrates on improving employee well-being and efficiency in the 

context of Industry 5.0 by suggesting a human-centered framework for human-robot 

collaboration. It presents a preference-based optimization algorithm (AmPL-RULA) 

that combines ergonomic evaluations (RULA) to enhance the configurations of 

collaborative robots during tasks involving object handling. The research emphasizes 

how incorporating user feedback and ergonomic factors boosts physical well-being by 

alleviating workload, which in turn promotes enhanced working conditions and 

productivity in joint assembly tasks. 

 

Result 5: 
 

Workplace Well-Being in Industry 5.0: A Worker-Centered Systematic Review by 

Antonaci et al. (2024). 

 

This paper provides a comprehensive review of methods for monitoring and evaluating 

both physical and cognitive ergonomics within the framework of Industry 5.0, where 

enhancing worker well-being is essential for boosting productivity and ensuring safety. 

The research tackles three primary questions: the technologies employed to evaluate 

worker well-being, the process of data analysis, and the objectives of these 

assessments. Wearable inertial measurement devices and RGB-D cameras are 

highlighted as the most prevalent tools for monitoring physical ergonomics, whereas 

cardiac activity stands out as the key physiological metric utilized for cognitive 

ergonomics. The review indicates that future investigations should aim at creating 

multi-modal systems that combine both physical and cognitive evaluations, with a 

focus on their practical implementation in actual industrial settings to enhance worker 

well-being and productivity. 

 

Result 6: 
 

Maximizing efficiency and collaboration: Comparing Robots and Cobots in the 

Automotive Industry- A Multi-Criteria Evaluation Approach by Mouhib et al. (2024) 

 



   
 

 67 

This paper investigates the role of collaborative robots (cobots) in Industry 5.0, 

focusing on their relationship with traditional robots in assembly lines. The research 

compares cobots and traditional robots using a case study from an automotive factory 

and the Fuzzy AHP methodology. The findings reveal that cobots are effective for low-

volume, high-variability tasks, improving flexibility and worker well-being, but they do 

not match the reliability, precision, or productivity of traditional robots in repetitive 

tasks. The study proposes a decision-making framework to help industries choose the 

right technology for specific tasks, balancing productivity and worker well-being. 

 

Result 7: 
 

Real-time Monitoring of Human and Process Performance Parameters in 

Collaborative Assembly Systems using Multivariate Control Charts by Verna et al. 

(2024). 

 

This paper explores the challenges of manufacturing customized products in small 

quantities, highlighting the need for adaptable Human-Robot Collaboration (HRC) 

systems. The research introduces multivariate control charts as diagnostic tools to 

monitor key factors such as assembly duration, quality assessment, defect rates, and 

worker stress, providing a comprehensive view of both operational efficiency and 

employee well-being. By incorporating real-time tracking of these elements, the 

system can identify and address inefficiencies while prioritizing the welfare of 

operators. This approach is demonstrated in the assembly of custom electronic boards 

and can be automated through the HRC system's software or its digital twin. This 

enhances performance without overloading operators, achieving a balance between 

productivity and employee well-being in customized manufacturing environments. 

 

Result 8: 
 

An innovative integrated solution to support digital postural assessment using the 

TACOs methodology by Khamaisi et al. (2024). 

 

This paper introduces an innovative solution for ergonomic assessment in Industry 5.0 

that overcomes the challenges of manual methods, which are often time-consuming 
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and reliant on ergonomist expertise. By integrating wearable sensors and digital 

posture assessments, the study aims to enhance worker well-being and productivity 

through real-time monitoring of ergonomic risks. The proposed system features a 

wearable suit and a software tool based on the Time-Based Assessment 

COmputerized Strategy (TACOs) method, enabling even non-expert users to conduct 

reliable postural evaluations. Preliminary tests in simulated industrial settings 

demonstrate that this system provides more accurate and efficient results than 

traditional methods, highlighting its potential for proactive intervention to reduce 

musculoskeletal disorders and improve workplace safety and productivity. 

 

Result 9: 
 

Digital Twins in Industry 5.0 – a systematic literature review [Gemelos Digitales en la 

Industria 5.0 – una Revisión Sistemática de Literatura by Domínguez (2024). 

 

This study explores the role of digital twins in advancing Industry 5.0, focusing on their 

effects on worker safety, human-robot collaboration, and manufacturing efficiency. 

Digital twins improve safety through real-time monitoring and proactive risk 

management while also enhancing collaboration and boosting production efficiency. 

However, there are challenges that need to be addressed, including data quality, 

computational complexity, cybersecurity risks, and the consideration of human and 

socio-economic factors. Overall, the study emphasizes the potential of digital twins to 

create safer and more efficient industrial environments in the context of Industry 5.0. 

 

Result 10: 
 

Human-Centric Assistive Technologies in Manual Picking and Assembly Tasks: A 

Literature Review by Lucchese et al. (2024). 

 

The authors explore the role of Industry 4.0 assistive technologies in production and 

logistics systems, focusing on their impact from a human-centric perspective. The 

study reviews various assistive technologies, categorizing them by task type (e.g., 

picking, assembly), the type of support they offer (cognitive or motor), and potential 

drawbacks. The findings highlight the importance of considering worker well-being and 



   
 

 69 

performance when developing and implementing these technologies, advocating for a 

comprehensive, human-centric approach to enhance both productivity and operator 

health. 

 

Result 11: 
 

“CANTINA 5.0”—A Novel, Industry 5.0-Based Paradigm Applied to the Winemaking 

Industry in Italy by Venturi et al. (2024) 

 

This document examines how Industry 5.0 concepts can be implemented in the Italian 

winemaking sector, emphasizing the importance of sustainability, human-centered 

approaches, and innovation. The winemaking sector, characterized by small and 

medium enterprises (SMEs) as well as large companies with varying approaches, 

faces challenges due to climate differences and seasonality. The CANTINA 5.0 project 

aims to bridge these gaps by integrating human well-being, environmental monitoring, 

and advanced technologies across diverse production conditions. Furthermore, the 

study uses smart tools and questionnaires to monitor the health and well-being of 

workers, as well as adopt novel environmental monitoring techniques, such as IoT-

based sensors and gas chromatography, to improve the production process. 

Additionally, sensory analysis of the wine, considering both chemical and emotional 

characteristics, is utilized to optimize quality in alignment with Industry 5.0 principles. 

 

Result 12: 
 

Advancing human–robot collaboration in handcrafted manufacturing: cobot-assisted 

polishing design boosted by virtual reality and human-in-the-loop by Ciccarelli et al. 

(2024). 

 

This article examines the use of collaborative robots (cobots) in the handcrafted 

manufacturing sector, with a focus on the fashion industry and the reduction of work-

related risks. Unlike traditional manufacturing, handcrafted processes, such as leather 

shoe polishing, present challenges due to the need for precision, adaptability, and 

nuanced decision-making. The study suggests utilizing collaborative robots (cobots) 

during the initial polishing phase to manage physically demanding tasks. This 
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approach allows artisans to concentrate on the finalization and quality control 

processes. Additionally, the research incorporates the concept of human-in-the-loop 

(HITL) and virtual reality simulations to enhance human-robot collaboration, ensuring 

safety, ergonomics, and efficiency. By addressing human factors in the design and 

development of cobot systems, this study provides insights for effectively integrating 

collaborative robotics into craftsmanship, aligning with both industrial performance 

goals and worker well-being. 

 

Result 13: 
 

RHYTHMS: Real-time Data-driven Human-machine Synchronization for Proactive 

Ergonomic Risk Mitigation in the Context of Industry 4.0 and Beyond by Ling et al. 

(2024) 

 

The challenges associated with human-machine work systems (HMWS) within the 

frameworks of Industry 4.0 and 5.0 are examined, with an emphasis on the necessity 

for real-time synchronization between humans and machines. HMWS combines 

human cognitive flexibility with machine precision, but the lack of real-time information 

sharing, human instability, and complexities in smart networking environments can 

hinder synchronous coordination. RHYTHMS is a solution proposed by the authors 

that utilizes a service-oriented human-to-machine architecture (SOH2M) along with 

model reference adaptive fuzzy control to facilitate real-time data sharing and enhance 

synchronization. A real-life assembly case study demonstrates how this approach 

proactively mitigates ergonomic risks, supporting a human-centric manufacturing 

model aligned with the principles of Industry 5.0.  

 

Result 14: 
 

Updating design guidelines for cognitive ergonomics in human-centred collaborative 

robotics applications: An expert survey by Gualtieri et al. (2024). 

 

The discussion centers on the significance of cognitive ergonomics in designing 

collaborative human-robot systems within the framework of Industry 5.0. The goal is 

to create and validate guidelines that aid non-experts in developing user-centered 
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assembly applications, highlighting the factors that enhance workers' cognitive 

responses. The guidelines were created through an extensive review of scientific 

literature and validated through feedback from field researchers and a survey of 108 

international experts. The results confirm that integrating human factors into the design 

of collaborative applications can enhance system adaptability and resilience, 

improving worker safety, ergonomics, and well-being.  

 

Result 15: 
  

Navigating HR industry 5.0: Seizing opportunities and confronting challenges by 

Shukla et al. (2024). 

 

The strategic HR value chain model is introduced within the context of Industry 5.0, 

emphasizing the necessity for HR practices to align with organizational goals to drive 

sustainable growth. This model highlights the importance of measurable outcomes, 

continuous improvement, and a people-centric approach. It also underscores the role 

of technological integration in optimizing core HR functions such as talent acquisition, 

learning and development, performance management, and total rewards. Focusing on 

employee well-being and development fosters a positive workplace culture that drives 

innovation and success in the digital era. The model serves as a guide for navigating 

the changing HR landscape, allowing organizations to effectively address challenges 

and seize opportunities in today's business environment. 

 

Result 16: 
 

Development of a novel machine learning-based approach for brain function 

assessment and integrated software solution by Qu et al. (2024). 

 

The integration of cybernetic principles and data-driven methods seeks to enhance 

rehabilitation processes in healthcare, particularly within the framework of Industry 5.0, 

which emphasizes human-centered solutions. This research concentrates on 

developing a comprehensive multimodal approach to combine rehabilitation data 

through the utilization of electroencephalogram (EEG) and functional near-infrared 

spectroscopy (fNIRS) for evaluating motor imagery (MI) tasks. By incorporating 
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techniques such as Granger causality and a brain region adjacency matrix, this study 

integrates electrophysiological and hemodynamic data, enhancing the 

complementarity and understanding of neural processes. The findings indicate that 

the multimodal fusion method provides higher accuracy and stability, suggesting its 

potential for broader research applications. These results have been used to develop 

an intelligent rehabilitation platform that supports personalized medicine and 

enhances medical practices by offering a personalized and more effective approach 

to patient care. This research contributes to rehabilitation modeling, equipment design, 

and the application of cybernetics in healthcare. 

 

Result 17: 
 

Determining Cognitive Workload Using Physiological Measurements: Pupillometry 

and Heart-Rate Variability by Ma et al. (2024). 

 

This study introduces a new method for measuring cognitive workload in 

manufacturing environments that are highly digitalized and human-centered. This 

method links task complexity, operator expertise, and cognitive workload to overall 

operator performance. The approach was tested through experiments in which 

operators performed assembly tasks on a Wankel engine block. During these tasks, 

physiological signals were recorded, including heart rate variability and pupillometry. 

The results indicated statistically significant differences in cognitive load across 

different task complexities. Experts typically demonstrated lower cognitive load 

compared to others. This approach provides a more accurate assessment of cognitive 

load than traditional methods, highlighting its potential use in optimizing workplace 

design. 

 

Result 18: 
 

Information Technology based on Industry 5.0 Human Place into IoT-and CPS-based 

Industrial Systems by Noori et al. (2024). 

 

This study explores the intersection of art design and Human-Cyber-Physical Systems 

(HCPS) within the context of Industry 5.0, with a specific focus on applications of 
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Emotional Intelligence (EI). The research explores how HCPS can improve EI by 

integrating system design, theoretical evaluation, and methodology development with 

the human-in-the-loop concept. This integration enhances system efficiency and 

performance. The results underscore the synergistic relationship between technology, 

art, and the creative industries, suggesting future research directions and applications 

that utilize digital transformation to promote enhanced human-centric design and 

creativity. 

 

Result 19: 
 

A human-centric system combining smartwatch and LiDAR data to assess the risk of 

musculoskeletal disorders and improve ergonomics of Industry 5.0 manufacturing 

workers by Pistolesi et al. (2024). 

 

These authors present a privacy-preserving system aimed at monitoring the posture 

of workers engaged in assembly and disassembly tasks, addressing the widespread 

issue of back pain and its associated costs. The system utilizes artificial intelligence 

to track both the upper and lower body postures of workers during repetitive activities 

such as screwing and soldering. It incorporates inertial sensors in smartwatches and 

LiDAR technology while adhering to the ISO 11226 European standard. The system 

collects data, including information on posture and movement, in a way that ensures 

it is non-identifiable, meaning it cannot be traced back to specific individuals. This 

approach preserves worker privacy. The results indicate an impressive 98% accuracy 

in detecting posture, which helps identify poor posture habits and reduce the risk of 

musculoskeletal disorders. 

 

Result 20: 
 

Analyzing psychophysical state and cognitive performance in human-robot 

collaboration for repetitive assembly processes by Gervasi et al. (2024). 

 

The research investigates how human-robot collaboration (HRC) affects worker well-

being, specifically looking at stress, cognitive load, and fatigue during repetitive 

assembly tasks. By employing non-invasive biosensors to monitor the operator's 
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psychophysical state in real-time, the study underscores the significance of 

understanding cognitive workload in order to improve both worker well-being and 

performance. The results indicate that using a collaborative robot (cobot) decreases 

stress and cognitive load, particularly during the initial phase of a shift, and results in 

fewer process failures compared to manual methods. This approach underscores the 

potential of using non-invasive monitoring to improve collaboration, reduce physical 

and mental strain, and enhance productivity in Industry 5.0 environments. 

 

Result 21: 
 

Human Digital Twin in the context of Industry 5.0 by Wang et al. (2024). 

 

This paper examines the concept of the Human Digital Twin (HDT) in the context of 

Industry 5.0. HDTs are digital representations of individuals that incorporate human 

characteristics into system design and performance, with the goal of improving human-

system collaboration. The study tackles the absence of standardized frameworks and 

architectures for HDTs in practical applications, offering a thorough review of their 

evolution, proposed definitions, and conceptual frameworks. It also offers insights into 

how HDTs can help realize human potential, meet diverse needs, and support human-

centric goals in manufacturing systems. 

 

Result 22: 
 

Evaluating the Impact of AI-Based Sustainability Measures in Industry 5.0: A 

Longitudinal Study by Valeriya et al. (2024). 

 

The study emphasizes the role of AI-driven sustainability metrics in Industry 5.0, 

demonstrating how artificial intelligence and human expertise collaborate to enhance 

sustainability, financial performance, and employee satisfaction. The human aspect 

saw significant improvements, with employee satisfaction rising from 4.2 to 4.7 and 

work-life balance scores increasing from 4.1 to 4.6.  

Result 23: 
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Human-Centric AI Adoption and Its Influence on Worker Productivity: An Empirical 

Investigation by Shchepkina et al. (2024) 

 

This empirical study explores the effects of human-centric AI deployment in the 

industrial sector, highlighting transformative changes in the workplace. It highlights a 

35.5% increase in productivity due to AI's ability to automate repetitive tasks, provide 

data-driven insights, and enhance decision-making. Additionally, employee 

satisfaction improved by 20.6%, with better work-life balance and job happiness. 

Structured AI training programs resulted in a 29.6% boost in skill development, and 

departments experienced significant cost reductions of up to 40%. 

 

Result 24: 
 

Human-Centered Edge AI and Wearable Technology for Workplace Health 

and Safety in Industry 5.0 by Nguyen et al. (2024). 

 

This research explores how human-centered edge AI and wearable technology can 

be integrated to enhance workplace health and safety in Industry 5.0. It emphasizes 

the significance of real-time monitoring through wearable sensors that utilize Industrial 

Internet of Things (IIoT) technologies. These sensors track physiological and 

environmental conditions to prevent hazards and enhance overall efficiency. 

Moreover, AI allows for immediate decision-making by processing data locally, 

reducing latency, and addressing privacy concerns. Despite limited computing power 

and battery life, the study highlights the potential of these technologies for a safer, 

more productive work environment. 

 

Result 25: 
 

Digital Transformation Towards Human-Centricity: A Systematic Literature Review by 

Crnobrnja et al. (2024). 

 

This study examines the intersection of "Human-Centricity" and "Industry 5.0" in 

manufacturing and identifies key research directions for future development. It 

emphasizes the essential role of worker well-being in improving productivity within the 
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Industry 5.0 framework. Specific areas for further exploration include human-robot 

interaction, AI integration, ergonomics, safety, and training for skills development. The 

paper proposes that a human-centric approach, which focuses on both well-being and 

skill enhancement, is essential for improving productivity and promoting sustainable 

manufacturing practices in Industry 5.0. 

 

Result 26: 
 

Designing Augmented Reality Assistance Systems for Operator 5.0 Solutions in 

Assembly by Cimini et al. (2024) 

 

The integration of Augmented Reality (AR) into human-centered smart manufacturing 

systems within Industry 5.0 has the potential to significantly enhance operator 

performance, especially in assembly and disassembly tasks. This approach utilizes 

AR technology to provide real-time information and guidance, enhancing efficiency 

and accuracy in manufacturing. It highlights the importance of human-centered design 

in AR applications and recommends integrating AR into manual workstations to boost 

operator productivity and well-being. Key findings highlight the importance of 

considering user groups, selecting suitable devices for usability, and creating clear 

instructions. 

 

Result 27: 
 

A Meta-heuristic Approach for Industry 5.0 Assembly Line Balancing and Scheduling 

with Human-Robot Collaboration by Zhang et al. (2024). 

 

This research examines how human-robot collaboration (HRC) can improve assembly 

line balancing in Industry 5.0, focusing on enhancing productivity and operator well-

being. It presents an adaptive simulated annealing (SA) framework with innovative 

task allocation mechanisms, including a new fitness value calculation and a heuristic 

approach for optimizing workload distribution between human and robot operators. 

The findings indicate that this meta-heuristic approach significantly boosts productivity, 

reduces cycle times, and enhances operators' welfare by strategically balancing tasks 

and decreasing the number of operators required at each workstation. 
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Result 28: 
 

Promoting human-centered manufacturing through Lean Ergonomics–a structural 

equation model for ergonomics and management data by Brunner et al. (2024). 

 

The Stress-Strain Concept (SSC) is utilized to explore the relationship between 

ergonomics and productivity on the shop floor, drawing on empirical data from manual 

work processes in chemical reactor operations. By analyzing ergonomic factors such 

as physical strain, health, and age alongside business data like work process times, 

the study finds that stress and physical strain significantly affect productivity, 

particularly when considering health. The results indicate that ergonomic 

improvements can lead to lasting benefits that enhance productivity. This suggests 

that focusing on worker well-being can result in more efficient work processes. 

 

Result 29: 
 

A Review of HRV and EEG Technology Applications in Industry 5.0: Emphasising 

Manufacturing Efficiency and Worker Well-Being by Chulakit et al. (2024). 

 

This review paper examines the application of physiological monitoring techniques, 

specifically Heart Rate Variability (HRV) and Electroencephalography (EEG), in the 

manufacturing industry within the framework of Industry 5.0's human-centric approach. 

The text emphasizes the significance of biometric tools in enhancing worker well-

being, managing cognitive workload, and improving human-machine interactions. It 

outlines the benefits of heart rate variability (HRV) in monitoring autonomic nervous 

system activity and assessing health outcomes. Additionally, electroencephalography 

(EEG) is highlighted for its capability to map psychological states and support Brain-

Computer Interface technologies. By integrating these monitoring techniques, the 

paper suggests that manufacturing operations can prioritize both worker health and 

operational efficiency. 

Result 30: 
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The Impact of New Technologies on Occupational Safety and Health from the Point of 

View of Their Academic Interest by Cuadrado-Cabello et al. (2024). 

 

This study examines how emerging technologies from Industry 4.0 and 5.0 enhance 

Occupational Safety and Health (OSH) for workers. By analyzing articles from 

SCOPUS and Web of Science, the research reveals that the main focus of these 

technologies is on risk assessment. Wearable technology and artificial intelligence (AI) 

are identified as the most relevant technologies for improving OSH. The paper 

highlights the significant potential of these technologies to enhance worker safety and 

well-being, particularly through their applications in monitoring health metrics and 

predicting risks. 

 

Result 31: 
 

Gamification for Manufacturing (GfM) Towards Era Industry 5.0 by Baroroh et al. 

(2024) 

 

This research examines Gamification for Manufacturing (GfM) in the context of 

Industry 5.0, emphasizing its potential to improve workers' well-being and productivity. 

By prioritizing human-centric values, GfM offers a promising approach to achieving 

these objectives. The framework is intended to assist professionals and researchers 

in effectively integrating GfM into Industry 5.0. 

 

Result 32: 
 

The Importance of Soft Skills for Computing Graduates in the Context of the Fifth 

Industrial Revolution by Enakrire et al. (2024). 

 

A systematic literature review was conducted to examine the changing demands of 

the Fifth Industrial Revolution on computer science curricula. It emphasizes the need 

for graduates to possess both technical skills and essential soft skills, such as 

collaboration and interpersonal abilities. The findings support a competency-based 

education framework that integrates these skill sets to prepare graduates for a future 

centered on human-machine collaboration. The paper suggests that educational 
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programs should regularly update their curricula to promote the integration of human-

machine interaction, organizational change, and increased productivity while also 

fostering graduates’ self-confidence and overall development. 

 

Result 33: 
 

Challenges in Developing Digital Twins for Labor-intensive Manufacturing Systems: A 

Step towards Human-centricity by Götz et al. (2024). 

 

This paper examines the challenges of developing Digital Twins in labor-intensive 

manufacturing systems that depend on human workers. While Digital Twins can 

enhance efficiency and improve decision-making, their integration is complicated by 

the unpredictable nature of human involvement. The study identifies key obstacles in 

creating data-driven Digital Twins and proposes a framework to support their 

implementation. A case study conducted with two companies illustrates the application 

of Digital Twins for decision support in job scheduling within hybrid machine-worker 

environments, with a focus on worker well-being. The findings emphasize the need to 

consider both technological and human factors for effective Digital Twin solutions in 

labor-intensive manufacturing. 

 

Result 34: 
 

MetaStates: An Approach for Representing Human Workers' Psychophysiological 

States in the Industrial Metaverse by Toichoa Eyam et al. (2024). 

 

The concept of MetaStates is introduced as digital representations of a human 

worker’s psychophysiological states, aiming to address the challenge of accurately 

simulating human factors in industrial contexts. Enhancing photo-realistic avatars with 

detailed graphical representations of physical and mental states improves the 

simulation of human workers during tasks. By integrating MetaStates into industrial 

simulations, companies can better utilize the Industrial Metaverse. This approach 

keeps human workers central to the system while also increasing the accuracy and 

effectiveness of simulations for decision-making and operational improvements. 
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Result 35: 
 

Surveying the landscape of Human-Centric Manufacturing in Lombardy: Insights from 

the practices and perspectives of Italian enterprises by Locatelli et al. (2024). 

 

This paper analyzes the technological readiness and human-friendliness of several 

Italian companies through a survey that evaluates technology development, funding 

allocation, and worker integration. The findings reveal a positive attitude toward 

innovation and human involvement, though a fully realized human-centric approach 

remains a work in progress. Ultimately, the insights gained provide valuable best 

practices to facilitate the transition toward more sustainable and human-centered 

digital manufacturing systems. 

 

Result 36: 
 

Industry 5.0: prioritizing human comfort and productivity through collaborative robots 

and dynamic task allocation by Granata et al. (2024). 

 

This paper introduces a dynamic multi-objective task allocation system aimed at 

optimizing the use of collaborative robots (cobots) in production environments. It 

monitors human well-being through physiological and performance data and 

reallocates tasks in real-time to prevent overwork and fatigue, thereby enhancing both 

efficiency and human involvement.  

 

Result 37: 
 

Towards Coordinating Machines and Operators in Industry 5.0 through the Web of 

Things by Picone et al. (2024). 

 

This paper introduces a groundbreaking architecture for Industry 5.0, emphasizing the 

integration of human-centric technologies through the Web of Things (WoT) standard. 

A central element of this architecture is the Operator Thing (OT), which serves as a 

digital replica of the human operator. The OT continuously monitors well-being factors 

such as stress and discomfort. The system adjusts in real-time to improve the synergy 
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between humans and machines while prioritizing worker comfort. By incorporating 

human conditions into operational procedures, this approach creates a more 

empathetic industrial environment. The solution has been validated through 

interdisciplinary evaluations and aligns with the human-centered principles of Industry 

5.0. 

 

Result 38: 
 

Revolutionizing Industry 5.0: Harnessing the Power of Digital Human Modelling by 

Donmezer et al. (2024). 

 

This paper explores the transformative potential of Digital Human Modelling (DHM) in 

advancing Industry 5.0, highlighting its applications across various sectors such as 

manufacturing, textiles, robotics, and energy. DHM facilitates the design and 

optimization of human-centered systems that enhance ergonomics, safety, and 

productivity. In manufacturing, it optimizes production processes by focusing on 

human factors to create smart factories. In textiles, DHM improves ergonomic 

workstation design for better worker comfort and efficiency, while in robotics, it ensures 

safe and productive human-robot interactions. In the energy sector, it aids in 

optimizing energy consumption and promoting sustainable practices. Overall, the 

integration of DHM into these sectors can lead to significant advancements in 

efficiency, safety, productivity, and sustainability, offering valuable insights for 

researchers and practitioners seeking to harness its full potential. 

 

Result 39: 
 

Enhancing Human Safety in Production Environments Within the Scope of Industry 

5.0 by Aksoy et al. (2024). 

 

The study proposes an AI-assisted system that analyzes sensor data to proactively 

identify hazardous situations and risky behaviors in production environments, such as 

machine malfunctions, gas leaks, and falls, facilitating timely interventions. It focuses 

on developing a system for real-time risk detection and utilizes predictive capabilities 

to enhance worker safety in the context of Industry 5.0. 
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Result 40: 
 

A Framework for Enhancing Human-Agent Interaction in Cyber-Physical Systems: 

OCRA Measurement Perspective by Meza et al. (2024). 

 

This paper introduces a Cyber-Physical System (CPS) framework designed for 

Industry 5.0. The framework incorporates human factors to enhance both human and 

system performance. By utilizing the OCRA index to evaluate ergonomic impacts, the 

system dynamically adjusts task planning and workloads to minimize physical strain 

by aligning tasks with human capabilities. The approach was tested in a simulated 

flexible manufacturing system using a multi-agent systems paradigm. 

 

Result 41: 
 

Exploiting Immersive Virtual Reality for Investigating the Effects of Industrial Noise on 

Cognitive Performance and Perceived Workload by Evangelista et al. (2024). 

 

The investigation into the impact of auditory stimuli on cognitive performance and the 

well-being of operators within confined environments underscores the human-centric 

approach characteristic of Industry 5.0. Immersive Virtual Reality (IVR) serves as a 

tool to simulate conditions endemic to confined spaces, thereby facilitating the 

comparison of effects between stationary and intermittent noise on cognitive load. The 

Stroop Test, in conjunction with a modified noise-induced task load index, provides a 

framework for evaluating cognitive performance and perceived exertion. Additionally, 

Heart Rate Variability (HRV) is employed to quantify physiological responses. The 

findings reveal a significant influence of noise on cognitive performance. 
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Result 42: 
 
Identification of Criteria for Enabling the Adoption of Sustainable Maintenance 

Practice: An Umbrella Review by Vasić et al. (2024). 

 

This study examines the transition from traditional industrial maintenance to 

sustainable maintenance (SM) within existing industrial ecosystems by utilizing an 

umbrella review (UR) methodology. It identifies 43 key criteria in maintenance 

decision-making (MDM) and highlights the most discussed factors, such as 

environmental pollution, energy consumption, and worker health and safety. The study 

also employs Bayesian Network Analysis to determine that labor costs, employee 

satisfaction, and resource consumption are the most influential criteria. Additionally, it 

notes a shift in research focus after 2021 from economic and technical factors toward 

a more balanced approach that includes social and environmental considerations. 

 

Result 43: 
 

The realities of achieving a Smart, Sustainable, and Inclusive shopfloor in the age of 

Industry 5.0 by Bonello et al. (2024).  

 

This study investigates integrating Industry 5.0 principles—sustainability, human-

centricity, and resilience—into the manufacturing sector to address the challenges 

faced by workers with disabilities. It identifies three primary issues: the tension 

between engineers and the inclusion of disabled workers, insufficient design 

knowledge for creating inclusive workstations, and a lack of social sustainability in 

disability employment. The study proposes future research and action focused on 

enhancing inclusive design knowledge and promoting social sustainability for 

individuals with disabilities in the manufacturing industry. 

 

Result 44: 
 

Industry 5.0 Adoption Among Heavy Machinery Producers: The Potential of Artificial 

Intelligence in Social Sustainability Facilitation by Valtonen et al. (2024). 
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The exploration focuses on how artificial intelligence (AI) can enhance social 

sustainability and worker well-being in the context of Industry 5.0, particularly for heavy 

machinery operators. It identifies challenges such as cognitive and physical strain, 

safety concerns, and skill gaps. AI-driven solutions are presented that improve 

operators' health, safety, emotional well-being, work efficiency, and access to training. 

The findings indicate the significant potential of AI to boost worker productivity and 

well-being in industrial settings. 

 

Result 45: 
 

Augmented Reality Towards Industry 5.0: Improving Voice and Tap Interaction Based 

on User Experience Feedback by Carrança et al. (2024). 

 

To examine the role of Extended Reality (XR), particularly Augmented Reality (AR), in 

industrial operations, this study focuses on preventive and reactive maintenance while 

emphasizing the importance of user-friendly design to enhance efficiency and 

decrease dependence on specialized technicians. This research involved the 

development and testing of an AR application with 27 participants, including both 

experienced and novice users. The findings highlighted significant improvements in 

user experience, particularly in areas like fluidity, responsiveness, and intuitiveness. 

Furthermore, the study showed that voice commands were as effective as tap 

commands, emphasizing the importance of user interaction in optimizing AR 

applications for Industry 5.0. 

 

Result 46: 
 

UX and Industry 5.0: A Study in Repairing Equipment Using Augmented Reality by 

Margolis et al. (2024). 

 

For the study of an Augmented Reality (AR) application for industrial equipment 

diagnostics, this study involved 18 participants from different professional 

backgrounds. The diverse expertise of the participants aimed to provide varied insights 

into the application’s effectiveness and usability in real-world scenarios. Overall, the 

system received positive feedback; however, several areas for improvement were 
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identified. User experience (UX) varied among different profiles, with human-centered 

design experts giving more critical feedback. These findings emphasize the 

importance of user-centered design and its impact on interactions with new 

technologies in Industry 5.0. 

 

Result 47: 
 

The Effect of Digitalization and Human-Centric on Companies’ Production 

Performances by Wan et al. (2024). 

 

This study stated that aligning digitalization with human-centricity is essential for 

improving production performance. It revealed an S-shaped relationship between 

production throughput and process flexibility, indicating that higher levels of human-

centric approaches combined with digitalization can enhance overall performance. 

The research emphasizes the importance of a balanced approach to human-centricity 

in production systems, considering the roles of managers and engineers. 

 

Result 48: 
 

A framework to design smart manufacturing systems for Industry 5.0 based on the 

human-automation symbiosis by Peruzzini et al. (2024). 

 

This study introduces a framework for Smart Manufacturing Systems Design (SMSD) 

within the context of Industry 5.0, with a particular focus on the collaboration between 

humans and automation. It utilizes an "Augmented Digital Twin" (ADT) to create a 

digital representation of all factory components—machines, robots, personnel, and the 

surrounding environment—facilitating AI applications that enhance productivity as well 

as employee well-being. By fostering knowledge sharing and co-evolution between 

human operators and machines, this methodology significantly improves collaboration 

and mutual understanding. The approach has been validated through partnerships 

with four industrial firms, seeking to rectify the deficiencies observed in Industry 4.0 by 

integrating human factors into the architecture of smart manufacturing systems. 
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Result 49: 
 

Rooting out the root causes of order fulfillment errors: a multiple case study by Helm 

et al. (2024). 

 

This study investigates the fundamental causes of errors in warehouse operations 

utilizing intelligent video analysis (IVA). Through the examination of numerous case 

studies from companies implementing IVA in outbound processes, such as order 

picking, packing, and sorting, the research determines that many errors frequently 

regarded as human mistakes actually arise from erroneous customer claims, inbound 

warehouse inaccuracies, or malfunctioning technology. The findings underscore the 

intricate interplay of technical, organizational, and human factors, yielding insights for 

the enhancement of error reduction strategies. 

 
Result 50: 
 

A scoping review of human robot interaction research towards Industry 5.0 human-

centric workplaces by Panagou et al. (2024). 

 

This scoping review explores how the design features of robots affect human 

operators in the context of Industry 4.0 and 5.0. By analyzing 32 articles, complex 

relationships between various robot design elements were revealed—such as 

appearance, capabilities, and communication features—and operators' perceptions of 

reliability, safety, and teamwork. Robot appearance and capabilities shape operators' 

perceptions of performance, while effective collaboration relies on strong 

communication skills. The results provide practical guidance for designers and 

practitioners, highlighting the significance of operator involvement, awareness of robot 

capabilities, and effective training. 

 

Result 51: 
 

Application of supportive and substitutive technologies in manual warehouse order 

picking: a content analysis by Grosse (2024). 
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The research examines the use of supportive and substitutive technologies in manual 

warehouse order picking, a labor-intensive and time-consuming process that affects 

supply chain efficiency. It underscores the importance of human factors and the 

interaction between workers and technology within socio-technical systems. The study 

explores the potential benefits and challenges of technologies such as augmented 

reality and exoskeletons, highlighting the need for further research on their integration. 

 
Result 52: 
 

Unravelling human-centric tensions towards Industry 5.0: Literature review, resolution 

strategies and research agenda by Pacheco et al. (2024). 

 

This study identifies 20 key tensions related to automation, well-being, safety, 

education, and value creation. These tensions are categorized into four dimensions: 

learning, organizing, belonging, and performing. The research develops a framework 

to address these tensions, offering resolution strategies aimed at enhancing worker 

well-being and performance. The findings emphasize the critical role of shop floor 

workers in adapting to Industry 5.0 and provide actionable insights for manufacturing 

companies seeking to integrate human-machine collaboration effectively. 

 

Result 53: 
 

A comprehensive STPA-PSO framework for quantifying smart glasses risks in 

manufacturing by Karevan et al. (2024). 

 

This study aims to quantify the risks associated with using smart wearables, such as 

smart glasses, in complex systems under Industry 5.0. It addresses a gap in the 

existing literature concerning the risks of human error by proposing a methodology 

called STPA-PSO. This approach combines Systems-Theoretic Process Analysis 

(STPA) to identify hazards with Particle Swarm Optimization (PSO) to optimize risk 

assessments. Through a case study focused on refrigerator assembly, the 

methodology proves effective in evaluating risks related to industrial, financial, and 

occupational health and safety aspects. 
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Result 54: 
 

Enhancing Workplace Safety through Personalized Environmental Risk Assessment: 

An AI-Driven Approach in Industry 5.0 by Lemos et al. (2024). 

 

This paper introduces a comprehensive system designed to monitor environmental 

risks in the workplace, with a specific focus on personalized health assessments 

aimed at improving worker well-being. The system tracks various environmental 

factors, including dust, noise, radiation, and temperature, while also considering 

workers' health histories. This allows for customized risk assessments and 

recommendations tailored to individual needs. Utilizing machine learning algorithms, 

the system provides actionable alerts to enhance safety and inform decision-making. 

Additionally, it prioritizes data privacy and protection, addressing the critical issue of 

managing sensitive health and exposure information. 

 

Result 55: 
 

Enhancing worker-centred digitalisation in industrial environments: A KPI evaluation 

methodology by Abril-Jiménez et al. (2024). 

 

This paper proposes a new methodology for Industry 5.0 that integrates human 

workers as key participants in the digitalization process. It addresses gaps in existing 

Industry 4.0 evaluation methods. Unlike KPI-driven approaches that focus mainly on 

technology, this methodology assesses the direct and indirect benefits of technological 

transformations for both workers and stakeholders. It includes tools for evaluating 

technological integration, process optimization, and human factors. A real case study 

demonstrates its application by comparing the digitalization processes of three 

companies. 

 

Result 56: 
 

Integrating AI with Lean Manufacturing in the Context of Industry 4.0/5.0: Current 

Trends and Applications by Boursali et al. (2024). 
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This article explores the role of Artificial Intelligence (AI) in improving lean 

manufacturing processes. It highlights AI's influence on smart manufacturing, 

sustainability, maintenance optimization, production efficiency, and quality 

enhancement. The study also emphasizes the importance of integrating human factors 

and digitalization. It reviews relevant literature from the SCOPUS database and 

advocates for further research into sustainable, human-centered manufacturing 

practices. 

 

Result 57: 
 

Metaverse for Industry 5.0 by Majumder & Dey (2024). 

 

This book chapter explores the metaverse in the context of Industry 5.0, emphasizing 

its connection to the human-centric vision of Web 4.0. It presents the metaverse as a 

digital ecosystem that enables collaboration between individuals and organizations, 

leveraging technologies like AI, VR, AR, MR, and IoT. The integration of the metaverse 

aims to enhance worker well-being and productivity through tailored solutions. The 

chapter covers the metaverse's evolution, advantages, challenges, ethical issues, and 

applications in sectors such as healthcare, construction, and manufacturing, 

concluding with a framework for its human-centric integration in Industry 5.0. 

 

Result 58: 
 

Human in the loop: revolutionizing industry 5.0 with design thinking and systems 

thinking by Dehbozorgi et al. (2024). 

 

This study examines Human-Centric Manufacturing and Systems (HCM and HCS) in 

the context of Industry 5.0, with a focus on worker welfare and sustainability. It 

highlights key principles such as safety, inclusivity, and empowerment within the 

human-centric approach. The paper discusses the effective integration of Design and 

Systems Thinking into HCM. It proposes a workshop at the MADE Competence Centre 

aimed at raising awareness and promoting these principles throughout the system life 

cycle. The goal is to encourage the development of HCS that prioritize both worker 

well-being and system efficiency in Industry 5.0. 
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Result 59: 
 

Informing User-Centered Approaches To Augmented Custom Manufacturing 

Practices by Franze et al. (2023). 

 

This study examines how augmented and mixed reality (AR/MR) technologies can 

boost productivity and efficiency in Australian small-to-medium (SME) custom 

manufacturers while addressing workforce challenges in Industry 4.0. It also considers 

how AR/MR can aid the transition to a human-centric Industry 5.0 model that prioritizes 

fabricator well-being. Findings from industry expert interviews highlight the benefits of 

reducing task uncertainties and improving fabrication practices. The research 

identifies future development areas, emphasizing the need for tailored solutions to 

enhance accessibility and competitiveness in custom manufacturing. 

 

Result 60: 
 

Artificial Intelligence for Smart Manufacturing in Industry 5.0: Methods, Applications, 

and Challenges by Nguyen et al. (2023). 

 

This study examines the role of Artificial Intelligence (AI) in Industry 4.0 and its 

evolution into Augmented Intelligence (AuI) in Industry 5.0, where AI is integrated with 

human intelligence to enhance manufacturing processes. It surveys AI-based 

methods, applications, and challenges in smart manufacturing within the Industry 5.0 

framework. The study demonstrates how these technologies can improve productivity 

while ensuring the well-being of human workers. Additionally, it provides valuable 

insights into the potential benefits and concerns related to AI and AuI in advancing 

smart manufacturing. 

 

Result 61: 
 

Empowering People in Human-Robot Collaboration: Why, How, When, and for Whom 

by Johansen et al. (2023). 
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This workshop focuses on empowering individuals in human-robot collaboration 

(HRC) within Industry 5.0 by addressing the genuine empowerment offered by HRC 

applications. It promotes a comprehensive approach involving user modeling, adaptive 

interfaces, interaction design, and situational awareness. The goal is to explore when 

HRC empowers humans and the benefits for all involved. Experts from fields such as 

robotics, engineering, ethics, psychology, and artificial intelligence are invited to 

contribute to the future of human-robot partnerships, aiming to enhance performance 

and work quality. 

 

Result 62: 
 

Evaluation of Lean Off-Site Construction Literature through the Lens of Industry 4.0 

and 5.0 by Hadi et al. (2023). 

 

This study investigates the implementation of lean manufacturing principles within the 

context of off-site construction (OSC). The review accentuates significant interactions 

between lean-OSC tools and the principles of Industry 4.0 and 5.0, identifying 

resilience as a critical integrative concept. Furthermore, the study delineates research 

deficiencies in social and environmental domains, encompassing mental health, 

assistive technologies, and end-of-life design. Human-centered technologies, 

including collaborative robots and exoskeletons, have the potential to enhance worker 

empowerment, diversity, and inclusion.  

 

Result 63: 
 

Multimodal Assessment of Cognitive Workload Using Neural, Subjective and 

Behavioural Measures in Smart Factory Settings by Zakeri et al. (2023). 

 

The mental workload and stress of human workers in collaborative robot (cobot) 

environments within Industry 5.0 are examined, focusing on how task complexity, 

cobot speed, and payload capacity influence stress levels. The results indicate that 

task complexity and cobot speed significantly affect mental stress, with physiological 

measures such as EEG and fNIRS providing more accurate assessments than 

traditional methods. Utilizing regression analysis and artificial neural networks (ANN), 
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the research highlights the potential of these physiological measures to replace 

conventional stress evaluation methods, particularly in predicting missed beeps, 

where the highest correlation and accuracy were observed. 

 

Result 64: 
 

Development of a Neuroergonomic Assessment for the Evaluation of Mental Workload 

in an Industrial Human–Robot Interaction Assembly Task: A Comparative Case Study 

by Caiazzo et al. (2023). 

 

This study explores the mental workload of operators engaged in human-robot 

interaction (HRI) tasks, specifically in the context of collaborative robots (cobots) within 

Industry 5.0. It compares two assembly task scenarios: one without robot interaction 

and one with it. To assess mental workload, a combination of subjective (NASA TLX) 

and objective (EEG) measurements is used, with cognitive workload characterized by 

analyzing brainwave power ratios. The results show that interacting with robots 

significantly reduces mental workload and improves task performance, as evidenced 

by a higher number of components assembled correctly when robots are involved. 

This research contributes to the field of neuroergonomics by providing insights into 

how collaborative robots can enhance operator well-being and efficiency in industrial 

settings. 

 

Result 65: 
 

A human-cyber-physical system for Operator 5.0 smart risk assessment by Simeone 

et al. (2023). 

 

This paper presents the development of a human-cyber-physical system (HCPS) 

designed to assess operator risk in the context of Industry 5.0. The HCPS offers an 

advanced method for risk assessment by integrating various types of sensing data, 

including physiological, environmental, and manufacturing variables. It analyzes 

complex patterns and interactions, dynamically adjusting to changing conditions to 

create real-time risk profiles for operators and work processes. The system provides 
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timely alerts that enable proactive safety interventions and optimize work processes. 

A simulated case study validates this framework. 

 

Result 66: 
 

Heart Rate Variability Measurement to Assess Acute Work-Content-Related Stress of 

Workers in Industrial Manufacturing Environment - A Systematic Scoping Review by 

Tran et al. (2023). 

 

This study evaluates heart rate variability (HRV) as a real-time indicator of acute work-

content-related-stress (AWCRS) in industrial environments. After analyzing 14 studies 

conducted between 2000 and 2022, it is clear that, although HRV and AWCRS were 

measured in several instances, there is not enough evidence to establish a link 

between them in industrial work. Additionally, no randomized controlled trials were 

identified, leaving the relationship between HRV and AWCRS still unclear. The review 

emphasizes the necessity for more rigorous research to validate HRV as a reliable 

indicator of worker stress, highlighting its potential role in monitoring well-being within 

the Operator 4.0 framework. 

 

Result 67: 
 

Safety At Work Within Industry 5.0-QUO VADIS [ZAŠTITA NA RADU U SKLOPU 

INDUSTRIJE 5.0-QUO VADIS] by Kralj et al. (2023). 

 

Since the introduction of Industry 4.0 in 2011, a global digital transformation has been 

underway, characterized by advanced ICT solutions, robotics, and new expert roles 

that enhance production. In 2015, Industry 5.0 emerged, emphasizing the importance 

of human potential alongside the Internet of Things (IoT) and Big Data to improve job 

quality and workers' skills. This study performs a literature review alongside a 

secondary data analysis, incorporating theoretical discussions, reports, and academic 

studies to strengthen its exploration of technological advancements in Industry 5.0. 
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Result 68: 
 

Human-centred data-driven redesign of simulation-based training: a qualitative study 

applied on two use cases of the healthcare and industrial domains by Brunzini et al. 

(2023). 

 

This paper explores simulation-based training in both industrial and healthcare 

sectors, within the context of Industry 5.0. It evaluates simulations from the learner's 

viewpoint, aiming to enhance performance and the learning process by taking into 

account physical, cognitive, and emotional factors. It includes data-driven guidelines 

for optimizing and redesigning training, applicable to both traditional and 

virtual/augmented reality systems. Two use cases are presented: a healthcare 

simulation for lumbar puncture procedures and an industrial simulation for replacing 

tractor engine oil filters. Despite the differences in content, the results reveal 

similarities in performance, cognitive processes, and emotional states. This allows for 

the development of a common set of guidelines to optimize simulations across various 

sectors. 

 

Result 69: 
 

An Experimental Protocol for Human Stress Investigation in Manufacturing Contexts: 

Its Application in the NO-STRESS Project by Apraiz et al. (2023). 

 

This paper presents a human-centered protocol for measuring stress in manufacturing 

environments. The protocol integrates physiological signals, performance metrics, and 

individuals' perceptions of stress. To capture physiological responses, it employs 

advanced techniques, including EEG (electroencephalogram), HRV (heart rate 

variability), GSR (galvanic skin response), and EMG (electromyography). It also 

assesses performance metrics such as task completion time, error rates, and 

production rates. Additionally, subjective self-assessments are included to reflect 

individual experiences of stress. Applied in both the automotive and plastic component 

industries, this protocol offers a comprehensive understanding of stress and provides 

valuable insights to inform interventions aimed at enhancing employee well-being. 
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Result 70: 
 

Multi-objective task allocation for collaborative robot systems with an Industry 5.0 

human-centered perspective by Calzavara et al. (2023). 

 

This paper proposes a multi-objective optimization model for task allocation in Industry 

5.0. The model aims to minimize makespan while also reducing operator energy 

expenditure and mental workload. With the growing use of collaborative robots 

(cobots) alongside human operators, the goal is to optimize task distribution. The 

methodology presents a novel approach for assessing mental workload and 

introduces a constraint related to resource idleness. Implemented in a real-world 

assembly scenario, the results indicate that this approach is effective. 

 

Result 71: 
 

Dual task scheduling strategy for personalized multi-objective optimization of cycle 

time and fatigue in human-robot collaboration by Chand & Lu (2023). 

 

This study presents a dual scheduling strategy designed to optimize task allocation in 

Human-Robot Collaboration (HRC). The primary goals are to reduce both cycle time 

and worker fatigue. The approach recognizes that workers in HRC environments have 

varying capabilities and muscle strengths, leading to different levels of fatigue 

response. The model integrates two objectives for minimizing fatigue: one aimed at 

reducing the overall fatigue of the team and the other focusing on individual workers. 

Balancing fatigue accumulation across the team and incorporating targeted rest and 

recovery periods maintains production efficiency while prioritizing worker well-being. 

 

Result 72: 
 

Augmented Reality in a Lean Workplace at Smart Factories: A Case Study by Pereira 

et al. (2023). 

 

This study applies a methodology called RAES-Log to explore the integration of 

Augmented Reality (AR) into material handling processes. The primary focus is on 
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improving workers' ergonomic conditions and reducing risks, in alignment with Industry 

5.0's human-centric approach. By minimizing human effort, preventing 

Musculoskeletal Disorders (MSD), and enhancing workplace efficiency, the research 

aims to create a safer and more effective working environment. Positive feedback from 

workers indicated improvements in well-being, engagement, and motivation, 

suggesting that augmented reality (AR) could greatly enhance productivity while 

fostering safer and waste-free work environments. 

 

Result 73: 
 

Effects of Presence on Human Performance and Workload in Simulated VR-based 

Telerobotics by Nenna et al. (2023). 

 

This paper investigates the impact of the Sense of Presence (SoP) in Virtual Reality 

(VR)-based telerobotics and examines its effects on industrial task performance and 

operator workload. Using a simulated teleoperation task with an industrial robotic arm, 

the study reveals that a higher SoP positively influences task performance, resulting 

in greater efficiency. However, the SoP had little impact on the operators' mental 

workload, indicating that while presence may boost productivity, its connection to 

workload needs further investigation.  

 

Result 74: 
 

Industry 5 and the Human in Human-Centric Manufacturing by Briken et al. (2023). 

 

This systematic literature review revealed that engineering experts are increasingly 

acknowledging workers as essential "end-users" in manufacturing innovations. 

However, published practices frequently neglect workers' perspectives. The findings 

suggest that Industry 5.0 has the potential to improve worker well-being and 

productivity by aligning technological development with human-centered design and 

practices. 
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Result 75: 
 

Dynamic muscle fatigue assessment using s-EMG technology towards human-centric 

human-robot collaboration by Chand et al. (2023). 

 

The authors developed a theory to quantify localized muscular fatigue by considering 

task load, muscle strength, and the number of repetitive operations. They used surface 

electromyography (s-EMG) technology to monitor operator fatigue in environments 

where humans collaborate with robots. This method allows for non-invasive, real-time 

monitoring of fatigue during dynamic manufacturing tasks. The system can 

continuously monitor operator fatigue using sensors like cameras, establishing a 

framework for integrating fatigue monitoring into human-robot collaboration systems.  

 

Result 76: 
 

An experimental focus on learning effect and interaction quality in human–robot 

collaboration by Gervasi et al. (2023). 

 

This paper investigates how the learning process acquired through interaction with 

robots affects user experience. It focuses on several factors, including robot speed, 

task control, and proximity to the robot's workspace. Participants performed assembly 

tasks in 12 different configurations and provided feedback about their experience, 

alongside physiological measures such as skin conductance and heart rate variability. 

The results indicated that the learning process significantly impacted user experience, 

with participants’ perceptions of the robot configuration factors changing over time.  

 

Result 77: 
 

Passive Exoskeletons to Enhance Workforce Sustainability: Literature Review and 

Future Research Agenda by Ashta et al. (2023). 

 

This paper examines the use of passive exoskeletons in manufacturing and logistics 

(M&L) systems. It categorizes exoskeleton performance based on different M&L tasks, 

providing insights into their practical applications, efficiency, and cost-effectiveness. 
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Additionally, it presents a maturity heat map to assess the development stage of 

various exoskeleton models in both scientific and industrial contexts. The paper offers 

recommendations for integrating exoskeletons into modern workplaces. 

 

Result 78: 
 

Manual assembly and Human–Robot Collaboration in repetitive assembly processes: 

a structured comparison based on human-centered performances by Gervasi et al. 

(2023). 

 

This study investigates the impact of Human-Robot Collaboration (HRC) on user 

experience and performance during a repetitive assembly task, with participants 

working in both manual assembly and HRC settings across two 4-hour shifts. Data 

were collected on affective states, body discomfort, workload, stress (measured via 

heart rate variability and electrodermal activity), and the quality of processes and 

products. The results revealed that HRC significantly reduced upper limb exertion, 

demonstrating its physical ergonomic advantages. Additionally, HRC led to decreased 

cognitive effort, lower stress levels, and fewer defects in the assembly process, 

indicating that collaborative robots enhance not only physical ergonomics but also 

cognitive performance and the overall quality of repetitive tasks. 

 

Result 79: 
 

Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and 

Effort from the Laboratory to the Industrial Working Place: A Systematic Review by 

Brambilla et al. (2023). 

 

This study analyzes 288 articles out of 1375 identified in scientific databases to 

evaluate current approaches for assessing fatigue, strain, and effort in the workplace, 

specifically regarding upper limb performance. It compares laboratory-based 

assessments with those conducted in real workplace settings. Laboratory studies 

typically utilize instrumental methods to assess upper limb biomechanics, while 

workplace evaluations often depend on questionnaires and rating scales. The findings 

indicate that future research should integrate both instrumental and self-reported 
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methods to develop multi-domain approaches. This would help expand the use of 

instrumentation in real-world settings and support the implementation of more 

structured trials. Such efforts are essential for translating laboratory findings into 

practical solutions aimed at improving worker health, reducing fatigue, and enhancing 

productivity. 

 

Result 80: 
 

How to Measure Stress in Smart and Intelligent Manufacturing Systems: A Systematic 

Review by Blandino (2023). 

 

This review examines the stress indicators affecting workers in smart and intelligent 

manufacturing systems. The analysis outlines various objective measures of stress, 

such as physical and physiological indicators, as well as subjective assessments, 

including psychological factors. It also discusses the experimental protocols and the 

environmental and demographic influences on stress. The study reveals that while 

many stress indicators have been thoroughly examined, there is a lack of standardized 

measurement techniques. Furthermore, it highlights the need to better consider 

environmental and demographic variables that could enhance the accuracy of stress 

assessments. It emphasizes the need for comprehensive, multi-faceted approaches 

to stress evaluation in advanced manufacturing systems to enhance understanding 

and mitigation of work-related stress. 

 

Result 81: 
 

Flexible job shop scheduling problem under Industry 5.0: A survey on human 

reintegration, environmental consideration and resilience improvement by Destouet et 

al. (2023). 

 

The authors introduce the Sustainable Flexible Job Shop Scheduling Problem, which 

integrates human and energy-efficiency considerations into the traditional flexible 

scheduling framework. The review evaluates the literature on Flexible Job Shop 

Scheduling Problems that include human and environmental factors, outlining future 

research directions for improving scheduling models that consider these aspects. 
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Result 82: 
 

Biomechanical Modeling of Human–Robot Accident Scenarios: A Computational 

Assessment for Heavy-Payload-Capacity Robots by Asad et al. (2023). 

 

This study focuses on the potential for injuries in human-robot collaboration (HRC) 

environments, addressing safety concerns particularly with medium- and low-payload 

robots, while also extending the analysis to high-payload, high-speed robots within 

Industry 5.0 contexts. This study employs quasi-static and dynamic simulations based 

on ISO TS 15066 standards to evaluate injury thresholds in scenarios with 

collaborative robots. The model of a human hand indicates that high-payload robots 

should operate at a maximum speed of 80% of that used by low-payload robots to 

minimize injury risk. The results highlight the significance of biomechanical analysis in 

creating safer collaborative environments and encouraging the use of heavy-payload 

robots. 

 

Result 83: 
 

Happy and Engaged Workforce in Industry 4.0: A New Concept of Digital Tool for HR 

Based on Theoretical and Practical Trends by Salvadorinho & Teixeira (2023). 

 

This study introduces BoosToRaise, a technological tool designed to improve and 

monitor workforce engagement. By combining a systematic literature review with 

benchmarking of existing applications, the tool was developed around key 

engagement predictors, including employee roles, skills and career management, 

supervisory support, and social relationships. It incorporates coaching and 

gamification to promote a happier and more engaged workforce, ultimately enhancing 

productivity, innovation, and competitiveness. 

 

Result 84: 
 

Fall Detection and Efficiency Enhancement via Wearable Technology by Enis Isik et 

al. (2023). 
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The paper discusses a technology called the smart glove, developed by the company 

Thread In Motion. This innovative device aims to integrate human-centric technologies 

to enhance worker capabilities instead of replacing human labor. The smart glove 

combines conductive thread with advanced electronic and mechanical components, 

all designed to optimize human physiology. A key project involves using Inertial 

Measurement Unit (IMU) sensors along with machine learning algorithms to capture 

and analyze human motion. A notable accomplishment is the ability to differentiate 

between the fall of a glove and the fall of the user. This advancement has led to the 

creation of a health emergency alarm system, commonly referred to as a "man-down" 

feature. The primary goal of this system is to enhance workplace safety, particularly in 

settings such as warehouses, by monitoring physical movements and minimizing 

human error.  

 

Result 85: 
 

Human-Centered Design in Industry 5.0: Leveraging Technology for Maximum 

Efficiency by Granata & Faccio (2023). 

 

This paper presents a dynamic multi-objective task allocation system that utilizes real-

time physiological and performance data to evaluate the well-being of human 

operators. By monitoring factors such as fatigue and stress, the system can 

dynamically reallocate tasks to prevent overwork, ensuring a balance between 

efficiency and human well-being. It emphasizes that to fully harness the potential of 

collaborative robots, workspaces should be designed to optimize the contributions of 

both humans and robots. 

 

Result 86: 
 

The Road to Industry 5.0: The Challenges of Human Fatigue Modeling by Zanoli et al. 

(2023). 

 

This paper presents an experimental analysis utilizing unsupervised learning on real-

world data to address the limitations of traditional fatigue assessment methods. 

Fatigue can negatively impact cognitive and motor functions, leading to decreased 
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productivity and increased safety risks. Although wearable devices offer a promising 

solution for continuous and non-intrusive monitoring of fatigue, challenges such as 

individual variability can reduce the effectiveness of traditional machine-learning 

models. This highlights the need for more sophisticated, personalized models to 

improve fatigue detection.  

 

Result 87: 
 

A Real-Time Double Flexible Job Shop Scheduling Problem under Industry 5.0 by Aribi 

et al. (2023). 

 

This paper examines how human factors like fatigue and energy consumption affect 

production efficiency within the Industry 5.0 framework. It focuses on a real-time 

double flexible job shop scheduling issue and proposes a dynamic strategy that utilizes 

an improved genetic algorithm. The paper emphasizes the significance of 

incorporating human well-being factors, such as energy management and fatigue 

control, into the optimization of productivity. It presents a comprehensive experimental 

analysis that demonstrates the effectiveness of the proposed solution in enhancing 

both worker well-being and operational efficiency within a flexible and dynamic 

production environment. 

 

Result 88: 
 

Research on the Visual Search Ability Decline Caused by Different Types of Noise by 

Yin & Li (2023). 

 

By analyzing the performance and physiological responses—such as reaction time, 

task completion time, pupil diameter, and visual hotspots—of 30 participants exposed 

to different types and levels of factory noise, this study investigates how such noise 

affects workers' visual search abilities within the context of Industry 5.0. The findings 

highlight the negative impact of noise on work efficiency and worker well-being, 

underscoring the importance of addressing these factors in industrial environments. 

Additionally, it finds that both composite and random noise, particularly for individuals 

sensitive to noise, significantly impair visual search performance. 
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Result 89: 
 

A review of work-related stress detection, assessment, and analysis on-field by 

Ciccarelli et al. (2023). 

 

This paper addresses the growing issue of work-related stress by analyzing its effects 

on both performance and health. It underscores the importance of accurately 

measuring mental stress in workplace settings, especially as production processes 

become more complex. While stress detection in controlled environments has been 

extensively studied, there is a significant gap in research focusing on stress detection 

in real-world work settings. The paper also highlights the need for innovative tools and 

methods to identify stress in dynamic work environments. The findings emphasize the 

necessity of adopting objective, multi-modal approaches to better understand 

stressors and to effectively alleviate them. 

 

Result 90: 
 

Advanced workstations and collaborative robots: exploiting eye-tracking and cardiac 

activity indices to unveil senior workers’ mental workload in assembly tasks by 

Pluchino et al. (2023). 

 

This study delves into how various human factors—such as task performance, mental 

workload, and subjective well-being—interact with the use of collaborative robots 

(cobots). It pays particular attention to dual-task scenarios that heighten cognitive 

demands, especially in senior workers who may face hurdles due to declining work 

capabilities. Results show that senior workers demonstrated a strong acceptance of 

the cobot and positive experiences, even when faced with higher mental strain. 

However, their performance was affected, resulting in increased errors and longer task 

duration during dual-tasking situations. Eye-tracking and cardiac data partially 

reflected the increased mental demand. The study highlights the need to understand 

human factors to build trust, reduce fatigue, and improve performance in collaborative 

manufacturing environments. The findings suggest that a holistic approach is vital for 

integrating cobots, especially for senior workers in Industry 5.0. 
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Result 91: 
 

The NASA-TLX Approach To Understand Workers Workload In Human-Robot 

Collaboration by Javernik et al. (2023). 

 

This paper examines how the motion parameters of robots influence worker utilization 

and workload. An experiment was conducted using the NASA-TLX questionnaire to 

analyze two scenarios with different robot motion parameters tailored for each 

participant, ensuring consistent conditions. The results demonstrated that individual 

differences, such as workers' abilities and skills, significantly affected both workload 

and utilization. This highlights the need for personalized approaches in Human-Robot 

Collaboration (HRC) settings. The findings underscore the importance of developing 

guidelines that consider these individual differences to enhance worker well-being and 

improve productivity in collaborative environments. 

 

Result 92: 
 

Data-Driven Human Factors Enabled Digital Twin by Kolesnikov et al. (2023). 

 

This paper presents the implementation of human factors-enabled digital twins to 

improve human-centered production systems. The proposed system collects real-time 

data related to human factors from various sources and employs a decision-making 

algorithm to schedule tasks based on the worker's condition dynamically. A digital twin 

model visualizes both the worker's status and the production system in real-time, 

utilizing a Visual Components simulation environment. The results demonstrate that 

production systems can adapt flexibly to changes in worker conditions, optimizing 

workflows and task distribution with automated guided vehicles (AGVs) and 

collaborative robots while also modifying workplace ergonomics to enhance worker 

safety and performance. 

 

Result 93: 
 

From Human to Robot Interaction towards Human to Robot Communication in 

Assembly Systems by Kambarov et al. (2023). 



   
 

 105 

 

This study explores the changing relationship between humans and robots in 

assembly systems, with a particular focus on the transition from physical to cognitive 

collaboration in Industry 5.0. It emphasizes how advanced communication 

technologies allow humans to guide robots, thereby improving flexibility, productivity, 

and worker well-being. The shift toward a human-centered environment, where skilled 

operators engage in both physical and cognitive tasks alongside robots, results in a 

safer, more efficient, and more fulfilling workplace. This form of collaboration is crucial 

for enhancing the efficiency of assembly operations and improving the overall well-

being of human workers. 

 

Result 94: 
 

Abrupt Movements Assessment of Human Arms Based on Recurrent Neural Networks 

for Interaction with Machines by Polito et al. (2023). 

 

This study aims to identify sudden and unpredictable human movements during 

collaborative human-machine tasks. It utilizes magneto-inertial measurement units 

(MIMUs) placed on the forearms. The research employs deep learning, specifically a 

recurrent neural network, to differentiate between normal gestures and abrupt 

movements that occur during a pick-and-place task. The results show a high accuracy 

of 99.25% in detecting these abrupt movements, which is essential for improving 

worker safety and operational efficiency.  

 

Result 95: 
 

Perceptual Computing Based Framework for Assessing Organizational Performance 

According to Industry 5.0 Paradigm by Tavrov et al. (2023). 

 

This paper presents a framework for evaluating organizational performance that uses 

perceptual computing to assess criteria related to a person's functional state, an 

essential aspect of worker well-being. Unlike traditional performance metrics, which 

can be subjective and imprecise, this framework allows regulators to express their 

opinions using natural language. It also addresses the uncertainties involved in 
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measuring physiological, psychological, and physical characteristics, making it 

adaptable for monitoring and improving human-centric industrial practices in Industry 

5.0. 

 

Result 96: 
 

A novel quality map for monitoring human well-being and overall defectiveness in 

product variants manufacturing by Verna et al. (2023). 

 

This paper introduces a new method called the "Quality Map," which combines two 

key indicators: production quality and worker well-being in the context of mass 

customization within Industry 5.0. By evaluating the overall defects in product variants 

alongside the stress responses of operators, this tool provides a comprehensive 

approach to monitoring both manufacturing quality and worker well-being during the 

production process. The study demonstrates the application of this method in a 

collaborative human-robot assembly setting, highlighting its ability to help companies 

balance the demands of high-quality, customized production with the necessity of 

ensuring worker well-being. 

 

Result 97: 
 

Quantifying the contribution of single joint kinematics to the overall ergonomic 

discomfort by Scalona et al. (2023). 

 

The correlation between joint displacement during straightforward reaching tasks and 

employee discomfort is examined, as it is essential for the prevention of work-related 

musculoskeletal disorders (WMSDs) in industrial environments. This research utilizes 

wearable inertial measurement units to capture comprehensive whole-body 

kinematics. It contrasts established ergonomic assessment frameworks, including 

RULA, REBA, and MMGA, with a quantitative index derived from joint kinematics 

termed W1. The study underscores the necessity for subject-specific, quantitative 

methodologies to accurately assess the risks associated with WMSDs. 
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Result 98: 
 

A Self-quantified Based Dashboard for Supporting Aged-Workforce in Industry 4.0 by 

Abril-Jimenez et al. (2023). 

 

This paper explores how self-quantification tools can help tackle the challenges posed 

by an aging workforce in Industry 5.0. It emphasizes the importance of adapting factory 

workflows to meet the evolving needs of older workers. The focus is on empowering 

these workers by helping them understand and develop their skills while promoting a 

more flexible, inclusive, and well-being-oriented work environment. 

 

Result 99: 
 

Reactive Flexible Job Shop Problem with Stress Level Consideration by Yadegari et 

al. (2023). 

 

This study investigates the flexible job shop scheduling problem (FJSSP) within the 

context of Industry 5.0, highlighting the significance of worker well-being, especially 

stress levels, on scheduling performance. It examines how the need to reschedule due 

to new job arrivals can increase worker stress. The study focuses on three types of 

changes: shifting operations, altering machine assignments, and changing operation 

sequences. To address this NP-Hard problem, a Genetic Algorithm (GA) is proposed 

to minimize stress while ensuring that the schedules remain efficient and compact 

despite the considerations for worker well-being. 

 

Result 100: 
 

Video-Based Fatigue Estimation for Human-Robot Task Allocation Optimisation by 

Zheng et al. (2023). 

 

This paper introduces a video-based method for estimating human fatigue in human-

robot collaboration systems, which overcomes the limitations of traditional wearable 

sensors. The method employs the boundary-aware dual-stream MS-TCN algorithm to 
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identify operation types and repetitions from video footage. The data is input into a 

fatigue model to assess worker fatigue levels. This estimated fatigue is then integrated 

into a human-robot task allocation optimization model, which aims to minimize cycle 

time while ensuring that fatigue remains within acceptable limits. The results highlight 

the effectiveness of both the fatigue estimation and the optimization methods. 

 

Result 101: 
 

The Role of Human Factors in Zero Defect Manufacturing: A Study of Training and 

Workplace Culture by Psarommatis et al. (2023). 

 

This review explores the importance of human factors in achieving Zero Defect 

Manufacturing (ZDM) within the context of Industry 5.0. It highlights key elements that 

contribute to the success of ZDM, including employee training, workplace culture, 

effective communication, and the utilization of assistive tools. The paper highlights the 

significance of human-centered approaches in enhancing manufacturing processes 

and minimizing defects. By prioritizing worker engagement, training, and motivation, 

industry professionals can improve zero-defect management outcomes. Moreover, the 

authors advocate for additional research on the impact of HF across various industries 

to develop more effective strategies for implementing ZDM. 

 

Result 102: 
 

Investigating Human Factors Integration into DT-Based Joint Production and 

Maintenance Scheduling by Franciosi et al. (2023). 

 

This study explores the integration of Digital Twin (DT) technology with Joint 

Production and Maintenance Scheduling (JPMS) within the contexts of Industry 4.0 

and 5.0. It specifically focuses on human factors that affect worker safety, well-being, 

and performance. Through a systematic literature review, the study identifies gaps in 

current research, particularly noting that aspects related to humans, such as workforce 

scheduling, adjustments due to worker absences, and the impact of human factors on 

stochastic parameters, are often overlooked. Based on these insights, the paper 
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proposes a framework for incorporating human factors into digital twin-based Job 

Performance Management Systems. 

 

Result 103: 
 

Dynamic Task Allocation for Collaborative Robot Systems by Granata et al. (2023). 

 

The paper presents an online approach for dynamic, multi-objective task allocation 

that allows for real-time adjustments to design human-centered workplaces integrating 

collaborative robots. (cobots) into production systems. By allowing cobots to work 

alongside human operators, the authors aim to achieve a balance between 

productivity and worker well-being. This approach represents an early effort to 

simultaneously assess human wellness and productivity in real-time, enabling 

immediate adjustments during task performance and creating a more effective and 

supportive work environment. 

 

Result 104: 
 

Human-centric production and logistics system design and management: transitioning 

from Industry 4.0 to Industry 5.0 by Grosse et al. (2023). 

 

This paper introduces a special issue of the International Journal of Production 

Research, which features ten articles that examine the human-centric aspects of 

Industry 5.0 and their implications for the design of production and logistics systems. 

It highlights the necessity for a more systemic, data-driven, and ethically conscious 

approach in future research. This approach should integrate human diversity and 

factors affecting system operators, addressing the limitations of Industry 4.0. 

 

Result 105: 
 

The Human Factor and the Resilience of Manufacturing Processes: A Case Study of 

Pharmaceutical Process Toward Industry 5.0 by Rubini et al. (2023). 
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This paper presents a methodology for assessing the vulnerability of human factors in 

production processes, with particular emphasis on the potential risks associated with 

weaknesses in both cyber and physical systems. Through the execution of an 

industrial case study, this research examines the interaction between human skills, 

specifically Operator 5.0, and cyber systems, particularly in scenarios where system 

performance is adversely affected. The study underscores the critical importance of 

the synergy between human actions and cyber systems for the recovery of overall 

system functionality capabilities. 

 

Result 106: 
 

Development of a new set of Heuristics for the evaluation of Human-Robot Interaction 

in industrial settings: Heuristics Robots Experience (HEUROBOX) by Apraiz et al. 

(2023). 

 

This paper introduces the HEUROBOX tool, a new set of heuristics designed to 

evaluate Human-Robot Interaction in industrial environments, with a focus on User 

Experience, Technology Acceptance, and overall worker well-being. With the growing 

collaboration between humans and robots, enhancing these interactions is essential 

for achieving optimal performance and a satisfying user experience. The HEUROBOX 

tool categorizes 84 basic heuristics and 228 advanced heuristics into four key areas: 

Safety, Ergonomics, Functionality, and Interfaces. Additionally, it incorporates 

important elements such as trust, perceived safety, inclusivity, and workload. The tool 

was validated by experts using the System Usability Scale questionnaire and 

prioritized through the Analytic Hierarchy Process. This provides a comprehensive 

framework for evaluating human-robot systems in industrial settings. 

 

Result 107: 
 

Integration of Industry 5.0 requirements in digital twin-supported manufacturing 

process selection: a framework by Papacharalampopoulos et al. (2023). 

 

This paper introduces a framework that utilizes digital twin technology, essential 

enabling technologies, and the concept of the micro factory to automate process 
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selection and scheduling. A case study evaluates two manufacturing components 

produced through Additive Manufacturing and laser welding under various scenarios. 

The study concludes that integrating Industry 5.0 criteria not only enhances worker 

well-being but also improves energy and time efficiency. This integration leads to 

higher profit margins and more sustainable production processes. 

 

Result 108: 
 

Role of Cobots over Industrial Robots in Industry 5.0: A Review by Sahan et al. (2023). 

 

This paper discusses the increasing role of collaborative robots in industrial 

automation, emphasizing their advantages compared to traditional industrial robots. 

Collaborative robots, or cobots, are specifically designed to work safely alongside 

human operators. They provide flexibility, are easy to program, and are cost-effective, 

making them particularly appealing to small and medium-sized businesses. Unlike 

industrial robots, which excel in repetitive tasks, collaborative robots, or cobots, are 

designed to operate in dynamic environments and manage more complex, cooperative 

activities. The authors highlight several benefits of cobots, including enhanced safety, 

greater adaptability, and reduced operational costs. The text also examines the current 

state of cobot technology and its potential to revolutionize manufacturing by improving 

efficiency, sustainability, and worker well-being. 

 

Result 109: 
 

A Framework for Human-aware Collaborative Robotics Systems Development by 

Montini et al. (2023). 

 

This paper introduces a framework aimed at enhancing human-aware collaborative 

robotics systems. It enables the development of a collaborative screw-driving 

application where both the operator and the robot actively perceive one another and 

provide support. The objective is to boost task efficiency while prioritizing the well-

being of human workers. The authors acknowledge that, despite the promise of 

collaborative robots working alongside humans, their actual use in manufacturing 

settings has been limited. 
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Result 110: 
 

Performance optimisation of pick and transport robot in a picker to parts order picking 

system: a human-centric approach by Vijayakumar & Sobhani (2023). 

 

This study presents a mathematical model designed to optimize the performance of 

Picker-to-Parts systems in e-commerce warehouses that utilize Pick and Transport 

Robots (PTRs). The model takes into account not only productivity and quality but also 

the well-being of order pickers, a consideration that is frequently overlooked in 

previous research. By using data from a case company, this model provides valuable 

insights for managerial decision-making, enabling the design of more efficient and 

worker-friendly order-picking systems. 

 

Result 111: 
 

A Smart Manufacturing Ecosystem for Industry 5.0 using Cloud-based Collaborative 

Learning at the Edge by Javed et al. (2023). 

 

The authors present a value-driven manufacturing process automation ecosystem for 

Industry 5.0, where each edge automation system operates on a local cloud and 

utilizes a service-oriented architecture. This ecosystem integrates cloud-based 

collaborative learning (CCL) across diverse fields, including building energy 

management, logistics robot oversight, production line coordination, and support for 

human workers. By fostering shared learning and collaboration, it aids the 

development of efficient manufacturing workflows that align with Industry 5.0 

principles. The workflow management system not only optimizes processes for 

sustainability and cost-effectiveness but also prioritizes the well-being of human 

workers. Overall, this adaptable ecosystem holds significant implications for the future 

of various industrial applications. 

 

Result 112: 
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Industry 5.0 and Operations Management - the Importance of Human Factors by 

Lindner & Reiner (2023). 

 

This paper emphasizes the importance of human cognition in operations management 

during the transition from Industry 4.0 to Industry 5.0. It argues that the increasing 

reliance on digital technologies in manufacturing requires human-centered 

approaches to leverage both human strengths and technology. The paper provides 

examples of how technology can support or hinder decision-making and explores the 

potential of human-AI interaction and explainable AI, particularly through 

visualizations, to improve operational performance. 

 

Result 113: 
 

A Cost-Effective Thermal Imaging Safety Sensor for Industry 5.0 and Collaborative 

Robotics by Barros et al. (2023). 

 

This paper presents a cost-effective thermal imaging Safety Sensor specifically 

designed for Industry 5.0 applications, aimed at enhancing human safety in 

environments characterized by collaborative robots and flexible manufacturing 

systems. The sensor utilizes a hybrid detection method to identify human presence 

adjacent to active machinery, thereby automatically engaging safe mode settings to 

prevent potential accidents. When evaluated under controlled conditions, the sensor 

demonstrated a remarkable accuracy rate of 97%, all while maintaining minimal 

computational costs. This positions the sensor as a practical solution for improving 

safety without undermining efficiency on the factory floor. 

 

Result 114: 
 

Wearable Technology for Smart Manufacturing in Industry 5.0 by Nguyen et al. (2023). 

 

This chapter examines the role of wearable Internet of Things (IoT) devices, 

highlighting their potential to enhance human tasks and address new industrial 

demands. The integration of artificial intelligence and IoT with wearable technologies 

has led to significant innovations in areas such as manufacturing, healthcare, and 
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sports. Despite facing challenges like security, privacy, and connectivity, the 

implementation of federated learning algorithms has bolstered data security, improved 

computing power, and increased accuracy. It also reviews the applications of wearable 

IoT devices in manufacturing, discusses their challenges, and presents case studies 

that utilize machine learning, deep learning, and federated learning for fall and fatigue 

classification. 

 

Result 115: 
 

A Comprehensive Study of Human Factors, Sensory Principles, and Commercial 

Solutions for Future Human-Centered Working Operations in Industry 5.0 by Loizaga 

et al. (2023). 

 

This study investigates the measurement of human factors in the workplace, which 

are essential for understanding workers' well-being. Human factors are the physical, 

cognitive, and psychological conditions affecting worker efficiency, effectiveness, and 

mental health. The paper identifies six key human factors: physical fatigue, attention, 

mental workload, stress, trust, and emotional state. It examines how these factors 

influence physiological responses, including brain activity, cardiovascular reactions, 

muscular responses, electrodermal activity, and eye changes. Additionally, the study 

reviews technologies for measuring these factors in workplace environments and 

highlights available commercial solutions for such assessments. 

 

Result 116: 
 

Challenges in introducing automated guided vehicles in a production facility–

interactions between human, technology, and organisation by Thylén et al. (2023). 

 

This paper uses the Human, Technology, and Organization (HTO) model to 

investigate the complexities of integrating Automated Guided Vehicles (AGVs) into 

production environments. It seeks to emphasize the often-overlooked human and 

organizational aspects in discussions about Industry 4.0, which usually focus on 

technological innovations. By addressing challenges such as developing new work 

procedures, ensuring operator knowledge, and gaining employee acceptance, the 
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study aims to provide insights for successfully incorporating AGVs into existing 

workflows. The results highlight that overcoming these challenges is vital for 

enhancing AGV performance and employee well-being, underscoring the need for a 

balanced approach that aligns human factors with technological advancements in 

Industry 5.0. 

 

Result 117: 
 

Human-Centered Design for Productivity and Safety in Collaborative Robots Cells: A 

New Methodological Approach by Boschetti et al. (2023). 

 

This research explores how collaborative robots (cobots) can merge the flexibility of 

manual systems with the productivity of automation by working alongside human 

operators in the context of Industry 5.0. It investigates control methodologies, such as 

computer vision and augmented reality, to enhance productivity by minimizing idle 

times and reducing the effort required from operators. Furthermore, it highlights the 

significance of establishing a safe, human-centered workspace through real-time 

monitoring, which ensures secure interactions between humans and robots. The paper 

also covers the optimization of task allocation to achieve a balance between 

productivity, operator well-being, mental workload, and energy expenditure. 

 

Result 118: 
 

Predictive maintenance for industry 5.0: behavioural inquiries from a work system 

perspective by van Oudenhoven et al. (2023). 

 

This paper examines the challenges of adopting Predictive Maintenance (PdM) 

solutions, with a specific focus on how changes in the roles of decision-makers impact 

their acceptance of these systems. Using the Smith-Carayon Work System model, the 

study investigates the human, task, and organizational factors that are involved in 

implementing PdM. Furthermore, it identifies four key factors that enhance the 

adoption of PdM: trust in the system, control over the decision-making process, 

availability of cognitive resources, and appropriate allocation of organizational 
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decision-making responsibilities. The findings of this study provide valuable insights 

aimed at improving the acceptance of PdM systems. 

 

Result 119: 
 

Multi-ResAtt: Multilevel Residual Network With Attention for Human Activity 

Recognition Using Wearable Sensors by Al-Qaness et al. (2023). 

 

The Human Activity Recognition (HAR) system utilizes a deep learning architecture 

known as Multi-ResAtt. This architecture combines a multilevel residual network with 

attention mechanisms to improve activity classification. The model processes data 

from inertial measurement units and features a recurrent neural network, enabling it 

to recognize complex human activities captured by wearable sensors effectively. 

Furthermore, the model utilizes three public datasets (Opportunity, UniMiB-SHAR, and 

PAMAP2). Multi-ResAtt surpasses existing human activity recognition models, 

showcasing its potential for Industry 5.0 applications such as smart homes and e-

health by enhancing activity recognition accuracy and efficiency in human-centric 

systems. 

 

Result 120: 
 

Future of industry 5.0 in society: human-centric solutions, challenges and 

prospective research areas by Adel (2022). 

 

This paper analyzes potential applications of Industry 5.0 with a focus on the 

collaboration between humans and machines in the context of smart factories. With 

the advent of Industry 5.0, there is a strong focus on delivering personalized products 

and enhancing customer satisfaction through cutting-edge technologies. The paper 

emphasizes key technological drivers of Industry 5.0, including big data analytics, the 

Internet of Things (IoT), collaborative robots, blockchain, digital twins, and the 

emerging 6G systems. Finally, the study addresses the challenges and issues faced 

by organizations involving robots and people on the assembly line. 

 

Result 121: 
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UX assessment strategy to identify potential stressful conditions for workers by 

Khamaisi et al. (2022). 

 

This paper presents a strategy for evaluating workers' User Experience (UX) within 

the framework of Industry 5.0, with an emphasis on human-centric design. The study 

utilizes noninvasive wearable devices to monitor human activities and physiological 

parameters in conjunction with self-assessment questionnaires. The goal is to improve 

workers' well-being and optimize industrial outcomes. A virtual reality (VR) simulation 

of heavy-duty tasks at an oil and gas pipe manufacturing site is utilized to identify 

potential physical and mental stressors that may affect operator performance. 

 

Result 122: 
 

Beyond playful learning – Serious games for the human-centric digital transformation 

of production and a design process model by Brauner & Ziefle (2022). 

 

This article explores the use of serious games as a human-centered approach to 

facilitate digital transformation in manufacturing, specifically the transition from 

Industry 4.0 to Industry 5.0. It discusses how serious games can help operators 

manage complex and uncertain information while improving their responses to 

dynamic production environments. The paper provides an adaptable process model 

for designing serious games and tests this model through a serious game focused on 

supply chain and quality management. Additionally, the study presents empirical 

research indicating that serious games can serve as an effective learning environment 

for evaluating the interfaces used by industrial workers. Ultimately, the paper 

advocates for the use of serious games as a methodology to support the transition 

from Industry 4.0 to Industry 5.0 in manufacturing settings. 

 

Result 123: 
 

Employee-centric innovation: Integrating participatory design and video-analysis to 

foster the transition to Industry 5.0 by Orso et al. (2022). 
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This paper highlights the significance of involving workers in the early stages of design 

to achieve the objectives of Industry 5.0. It presents a case study on the redesign of 

technology in a validation laboratory, emphasizing a human-centric approach and the 

well-being of workers within the context of Industry 5.0. By combining self-reported 

data from employees with objective event-based data from video analysis, the study 

provided a comprehensive understanding of work activities and the associated 

challenges. The findings led to a set of redesign recommendations, which included 

updating the application and introducing portable devices. A preliminary usability 

evaluation of the revised application showed promising results, demonstrating the 

effectiveness of this mixed-method approach. 

 

Result 124: 
 

Digital Twin as Industrial Robots Manipulation Validation Tool by Kuts et al. (2022). 

 

This study investigates how Virtual Reality interfaces can be integrated into Digital 

Twin (DT) systems for industrial applications, especially in the context of Industry 5.0, 

where human operators are integrated into automated systems. This research 

compares the performance of industrial robot control using traditional teach pendants 

and virtual reality (VR)-based DT interfaces. It evaluates several factors, including task 

completion time, stress levels, physical and mental effort, and user perceptions of both 

real and virtual robots. The findings indicate that while virtual reality (VR) interfaces 

may provide efficiency similar to traditional methods, they can also increase stress 

levels among users. Furthermore, the study emphasizes the potential of VR DT 

interfaces to enhance worker well-being and productivity. However, it recommends 

further research to confirm their long-term effects in collaborative industrial systems. 

 

Result 125: 
 

Evaluating quality in human-robot interaction: A systematic search and classification 

of performance and human-centered factors, measures and metrics towards an 

industry 5.0 by Coronado et al. (2022). 
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This article presents a literature review on measuring quality in Human-Robot 

Interaction (HRI), specifically in manufacturing environments, within the context of 

Industry 5.0. The review systematically analyzes 102 peer-reviewed articles and 

provides a taxonomy of performance aspects and a Venn diagram illustrating common 

human factors in HRI. The study clarifies often overlapping or confusing concepts in 

HRI research and identifies seven emerging research topics that are essential for 

advancing human-centered smart environments in Industry 5.0. 

 

Result 126: 
 

Design of Cognitive Assistance Systems in Manual Assembly Based on Quality 

Function Deployment by Pokorni et al. (2022). 

 

This research develops a method for designing cognitive assistance systems (CAS) 

in the context of Industry 5.0, where human-machine collaboration is key. The 

cognitive assistance system-QFD (CAS-QFD) combines business and worker 

requirements to improve productivity, quality, and worker well-being. The CAS-QFD 

methodology, which is based on Quality Function Deployment (QFD), consists of six 

phases. It focuses on addressing workers' information needs, defining support 

functions, and selecting appropriate interaction technologies. An industrial evaluation 

has shown that this method is effective in systematically designing cognitive 

assistance systems that meet comprehensive requirements across the worker, 

workplace, production, and enterprise levels. 

 

Result 127: 
 

Balancing and scheduling assembly lines with human-robot collaboration tasks by 

Nourmohammadi et al. (2022). 

 

This study focuses on the assembly line balancing problem with human-robot 

collaboration (ALBP-HRC) in advanced manufacturing, aiming to enhance productivity 

and worker well-being within the framework of Industry 5.0. The research develops a 

mixed-integer linear programming (MILP) model that incorporates the task times for 

both humans and robots, the joint tasks they may perform, and the possibility of having 



   
 

 120 

multiple humans and robots working at the same stations. The model is solved using 

a neighborhood-search simulated annealing (SA) algorithm that incorporates an 

adaptive neighborhood selection mechanism. Computational results applied to real-

world scenarios in the automotive industry demonstrate that the proposed SA 

algorithm produces promising solutions when compared to MILP and other 

optimization techniques. This indicates significant productivity gains when humans 

and robots collaborate at workstations. 

 

Result 128: 
 

KIDE4I: A Generic Semantics-Based Task-Oriented Dialogue System for Human-

Machine Interaction in Industry 5.0 by Aceta et al. (2022). 

 

This paper presents KIDE4I (Knowledge-driven Dialogue framework for Industry), a 

semantic-based task-oriented dialogue system designed for Industry 5.0. KIDE4I 

enables workers to interact naturally with industrial systems, thereby reducing 

cognitive load and enhancing system acceptance. KIDE4I is distinct from traditional 

systems in that it can adapt to new scenarios without needing extensive training data. 

This framework has been applied to four industrial use cases, with two of them 

evaluated through user studies. The results indicate that users perceive the system as 

accurate, efficient, flexible, and easy to use. 

 

Result 129: 
 

Ikigai Robotics: How Could Robots Satisfy Social Needs in a Professional Context? a 

Positioning from Social Psychology for Inspiring the Design of the Future Robots by 

Sartore et al. (2022). 

 

This study presents the concept of "ikigai robotics," focusing on the mutually beneficial 

relationship between worker well-being and performance in railway maintenance. By 

combining aspects of both industrial and service robotics, the research highlights the 

importance of the need for affiliation as a key factor that positively affects both well-

being and performance in this field. The findings emphasize that integrating robots 

designed with human well-being in mind can enhance productivity. Additionally, the 
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authors provide initial guidelines for designing "ikigai robots" and suggest that this 

concept could have broader applications beyond just railway maintenance. 

 

 

Result 130: 
 

Roadmap to Implement Industry 5.0 and the Impact of This Approach on TQM by 

Chaabi (2022). 

 

This paper develops a roadmap for implementing the transition to Industry 5.0, 

emphasizing a human-centric, sustainable, and resilient approach. It focuses on 

prioritizing the health and safety of workers while outlining strategies for embracing 

collaboration between workers and advanced technologies. This roadmap aims to 

foster a positive integration of robotics into the workforce by addressing concerns 

about job loss and enhancing productivity and efficiency. The roadmap integrates the 

ADKAR change management model with Quality Circles to enhance worker 

engagement and facilitate the transition to Industry 5.0. Furthermore, the paper 

examines the potential effects of Industry 5.0 on Total Quality Management, 

highlighting the importance of workers in promoting continuous improvement within 

industrial environments. 

 

Result 131: 
 

Impact of Meditation on Quality of Life of Employees by Sagar et al. (2022). 

 

This study investigates the effects of virtual meditation and mindfulness programs that 

incorporate artificial intelligence (AI) on promoting organizational health and 

enhancing mental well-being. The focus was on young engineers at PPS International 

in Greater Noida, India, who participated in an eight-week meditation intervention. The 

experimental group consisted of 30 males. The results showed significant 

improvements in quality of life across various domains, including perception, physical 

health, psychological health, social relationships, and environmental factors, when 

compared to a control group. This research contributes to the limited literature on AI-
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integrated wellness programs and highlights their positive effects on employee 

efficiency, emotional stability, and stress reduction. 

 

 

 

Result 132: 
 

An IoT-based Wireless Sensor Network for Lighting Control Systems by Pierleoni et 

al. (2022). 

 

This study introduces a lighting control system aimed at enhancing worker well-being 

in the context of Industry 5.0, with a focus on both physical and mental health. The 

system utilizes a wireless sensor network, integrating with standard lighting controls 

to extend their functionality. It also allows for remote monitoring through a web 

platform. The proposed solution seeks to regulate workers' circadian rhythms by 

modifying the lighting in the work environment, thereby enhancing their 

psychophysical well-being. The system has been tested in industrial settings, with its 

performance evaluated using metrics such as round-trip time, packet loss, and 

goodput. The results demonstrate the system's versatility and scalability, 

accommodating various node densities, network topologies, and sensor units. 

 

Result 133: 
 

Investigating exoskeletons applicability in manufacturing and logistics systems: state 

of the art and future research directions by Ashta et al. (2022). 

 

This paper explores the role of exoskeletons in the manufacturing and logistics 

sectors, aiming to improve worker well-being and increase productivity by reducing the 

risk of musculoskeletal disorders, particularly among an aging workforce. As modern 

industries shift towards human-centered workplaces, exoskeletons are regarded as 

promising solutions for enhancing ergonomics and safety. The study reviews various 

exoskeleton designs and their applications, categorizing them by task type, including 

simulated and real tasks, as well as by application field and evaluation methods. 
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Additionally, it highlights the growing interest in using tools such as electromyography, 

motion capture, and questionnaires to assess the effectiveness of these devices. 

 

 
 
 
 
Result 134: 
 

Promoting operator's wellbeing in Industry 5.0: detecting mental and physical fatigue 

by Villani et al. (2022). 

 

This paper investigates the detection of mental and physical fatigue in workers, in line 

with the human-centric approach promoted by Industry 5.0. By utilizing wearable 

devices to monitor operators' physiological conditions, specifically their cardiac 

activity, the study aims to identify fatigue at an early stage. Early detection of fatigue 

will enable the implementation of supportive strategies that enhance productivity and 

maintain the well-being of workers.The experiment subjects participants to both mental 

and physical fatigue, analyzing heart rate variability to distinguish between rest, mental 

fatigue, physical fatigue, and combined fatigue. The results reveal significant 

differences in time-domain metrics; however, identifying mental fatigue in conjunction 

with physical fatigue remains a challenge. These findings offer valuable insights into 

how fatigue detection can improve worker health and efficiency within Industry 5.0 

environments.  

 

Result 135: 
 

Review of Human-Machine Interaction Towards Industry 5.0: Human-Centric Smart 

Manufacturing by Yang et al. (2022). 

 

This paper explores the role of Human-Machine Interaction (HMI) in Human-Centric 

Smart Manufacturing (HCSM), a vital aspect of Industry 5.0. It presents a framework 

for HMI focused on the interaction process and examines research in several key 

areas: sensors and hardware, data processing, transmission mechanisms, and 

interaction and collaboration. The paper analyzes current developments in each of 
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these fields and investigates their potential applications in HCSM, where the emphasis 

shifts from merely enhancing productivity to prioritizing worker well-being and 

sustainability. The paper concludes by discussing the challenges and opportunities for 

future HMI research in smart manufacturing systems. 

 

 

Result 136: 
 

Supporting Resilient Operator 5.0: An Augmented Softbot Approach by Zambiasi et 

al. (2022). 

 

This paper examines the "Resilient Operator 5.0" concept within Industry 5.0. The aim 

is to enhance human adaptation, productivity, and mental health by creating intuitive, 

human-centered work environments. It introduces a novel approach, called an 

"augmented softbot", that combines softbots and augmented reality to improve 

preventive maintenance processes. A software prototype was developed, and three 

evaluation scenarios were analyzed within a specific company. The findings 

demonstrate the potential of this technology to support operational resilience, showing 

promising benefits for productivity and employee well-being. 

 

Result 137: 
 

An IIoT Platform For Human-Aware Factory Digital Twins by Montini et al. (2022). 

 

This paper discusses the need for new Digital Twins in Industry 5.0, which includes 

human workers alongside traditional system representations. It introduces an 

industrial IoT-based platform that addresses the current limitations of Digital Twin 

solutions, such as issues with reusability, scalability, and extensibility. The platform 

enables the creation of customized data models for both production systems and 

human workers, facilitating improved interaction modeling. Tested in a laboratory 

environment, it provides a flexible and modular infrastructure for easy instantiation of 

digital twins. 

 

Result 138: 
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Outlook on human-centric manufacturing towards Industry 5.0 by Lu et al. (2022). 

 

This paper introduces a framework grounded in the Industrial Human Needs Pyramid, 

which encompasses a comprehensive range of human needs—from safety to self-

actualization. The discussion highlights the progression of human-machine 

relationships, moving from mere coexistence and cooperation to deeper levels of 

compassion and coevolution. This evolution underscores the importance of 

bidirectional empathy, proactive communication, and collaborative intelligence. The 

authors suggest that future research should aim to create transparent and trustworthy 

technologies to enhance the effectiveness of high-performance human-machine 

teams. 

 

Result 139: 
 

Disruptive Technologies and Operations Management in the Industry 4.0 Era and 

Beyond by Choi et al. (2022). 

 

This study investigates disruptive technologies such as AI, robotics, blockchain, 3D 

printing, 5G, IoT, digital twins, and augmented reality, focusing on their impact on 

operations management (OM) in the context of Industry 4.0. It delves into their current 

applications while weighing the benefits against the potential drawbacks of these 

innovations. The paper also addresses the possible conflicts that may arise between 

human and machine interactions. Additionally, it introduces the idea of "sustainable 

social welfare," which includes considerations for worker well-being and privacy, 

emphasizing the crucial role of policymakers in maintaining a proper balance. 

 

Result 140: 
 

A preliminary experimental study on the workers’ workload assessment to design 

industrial products and processes by Bruzini et al. (2021). 

 

This paper discusses the role of human-centered design (HCD) in advancing Industry 

5.0, focusing on improving worker well-being while maintaining sustainable production. 
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It proposes an ergonomic assessment method to analyze workers' physical and 

cognitive workload during tasks. The method utilizes wearable devices to monitor 

physiological parameters and questionnaires for subjective assessments, enabling 

companies to optimize product and process design to enhance worker well-being. The 

method has been preliminarily tested in a real industrial case. 

 

Result 141: 
 

Device for monitoring the influence of environmental work conditions on human factor 

by Onofrejova et al. (2021). 

 

The paper emphasizes EU-OSHA's commitment to preventing work-related diseases, 

following the EU Strategic Framework on Health and Safety at Work for 2014-2020. It 

highlights the significant influence of the work environment on worker productivity, 

health, and safety. The paper advocates for the implementation of miniaturized 

technology to monitor working conditions, which can help build resilience against 

disruptions like the COVID-19 crisis. 

 

Result 142: 
 

Neuro-competence approach for sustainable engineering by de Miranda et al. (2021). 

 

This paper examines the Quintuple Helix innovation model and emphasizes the 

importance of engineers developing the right competencies, especially through the 

lens of connectivism learning theory. A bibliometric analysis was performed to pinpoint 

the key factors influencing the design of neuro-competencies in engineering 

education. The paper introduces the Neuro-Competence Engineering (NCE) model, 

which combines neuro-competence, activity theory, and neuroscience to better align 

engineering tasks with human capabilities, thereby promoting lifelong learning in a 

sustainable manner. 

 

Result 143: 
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Accelerating Time to Competency in an Industry 5.0 World by Kedzierski & Willetts 

(2021). 

 

This paper emphasizes how companies like Shell create more personalized 

experiences for their workers that align with business objectives and human welfare. 

It discusses innovations such as mobile, on-demand training, collaborative learning 

through Operator Training Simulators, AI-driven microlearning tailored to individual 

worker profiles, and Virtual Reality platforms that provide training for decision-making 

in real-time scenarios. Additionally, the paper highlights how tools like Microsoft Power 

Apps enable workers to develop their own solutions, marking the emergence of mass 

personalization in Industry 5.0. This approach aims to enhance both safety and 

individual performance. 

 

Result 144: 
 

Next Generation Auto-Identification and Traceability Technologies for Industry 5.0: A 

Methodology and Practical Use Case for the Shipbuilding Industry by Fraga-Lamas et 

al. (2021). 

 

This paper examines the impact of Auto-Identification (Auto-ID) technologies within 

the framework of Industry 5.0. It underscores how these innovations can boost worker 

productivity by facilitating transparent and human-centered traceability across the 

entire value chain. By investigating the latest Auto-ID solutions and implementing a 

selection methodology specifically for the shipbuilding sector, the paper highlights that 

a thoughtful evaluation and selection of technologies—such as RFID tags—can 

effectively address challenges posed by complex industrial settings. These 

technologies not only enhance product tracking and identification but also support 

production processes focused on the workers themselves. 

 

Result 145: 
 

Influence of emotional intelligence on the workforce for industry 5.0 by Chin (2021). 

 

This study examines the role of emotional intelligence in improving workforce 



   
 

 128 

performance within the framework of Industry 5.0. Unlike Industry 4.0, which 

emphasizes technological advancements, Industry 5.0 focuses on human intelligence 

and emotional skills in the workplace. The research, which involved 110 executives, 

reveals that emotional intelligence—especially the abilities to recognize emotions, 

express them, and direct them cognitively—significantly influences workforce 

performance. This underscores the importance of soft skills, such as emotional 

intelligence, in equipping workers for the challenges and demands of Industry 5.0, 

ultimately promoting both personal well-being and productivity. 

 

Result 146: 
 

The Entropic Complexity of Human Factor in Collaborative Technologies by Panagou 

et al. (2021). 

 

This paper examines the role of human operators in the evolving workplace 

environments shaped by Industry 4.0 technologies, such as automation, collaborative 

robots, and cyber-physical systems. It also looks ahead to Industry 5.0, which focuses 

on human sustainability within these technological frameworks. The study highlights 

the critical importance of human operators, especially considering the challenges 

posed by an aging workforce. It suggests that these operators need to adapt to new 

tasks, improve their skills, and prioritize safety and productivity in increasingly complex 

environments. Furthermore, the research presents a model derived from the concept 

of entropy in statistical mechanics to evaluate human capabilities and the potential for 

errors. 

 

Result 147: 
 

Walrasian Equilibrium-Based Multiobjective Optimization for Task Allocation in Mobile 

Crowdsourcing by Wang (2020). 

 

This paper focuses on improving task allocation in mobile crowdsourcing systems. It 

proposes a Markov and Collaborative Filtering-based Task Recommendation (MCTR) 

model that considers worker similarities, trajectory prediction, dwell time, and trust 

levels. This approach aims to encourage crowd workers to participate in tasks and 
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provide accurate data. The research also investigates the optimal solution using 

Walrasian equilibrium to maximize social welfare within mobile crowdsourcing 

systems. Comparison experiments demonstrate that the proposed task allocation 

model enhances the efficiency and adaptability of these systems. 

 

 

Result 148: 
 

Human Failures on Production Line as a Source of Risk of Non-conformity Occurrence 

by Nagyova et al. (2020). 

 

This paper explores how organizations implement automation to meet production 

needs, enhance performance, minimize costs, and satisfy customer demands. 

However, certain activities and processes cannot be fully automated and require a 

human-machine interface. These processes may introduce risks that are not easily 

predictable, and if identified too late, they could lead to inconsistent product quality. 

Such inconsistency may ultimately result in a loss of competitiveness and a decline in 

company profits. Additionally, the paper emphasizes risk analysis related to non-

conformity arising from the manual placement of components in automotive production 

processes. The causes of non-conformity were identified using quality tools, and 

system solutions for their elimination were proposed. In alignment with the Industry 

5.0 strategy, these solutions include investing in operator training programs to address 

the significant impact of the human factor within the human-machine system. 

 

Result 149: 
 

An automatic procedure based on virtual ergonomic analysis to promote human-

centric manufacturing by Grandi et al. (2019). 

 

This paper highlights the importance of integrating human factors into manufacturing 

processes to improve worker well-being, prevent illnesses, reduce errors, and mitigate 

excessive workloads. It outlines a systematic approach for the automatic extraction of 

data from virtual analyses performed by digital manufacturing tools to evaluate 

manufacturing ergonomics. The research establishes a set of indicators specifically 
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designed for assessing manual operations, with a particular focus on assembly tasks. 

Additionally, it presents a methodology for the automatic extraction of this data. An 

application developed in Visual Basic generates task lists and corresponding 

ergonomic assessments. This procedure was applied in a case study that examined 

the manual assembly of tractor cabin supports. The results led to a redesign that 

enhanced ergonomics by decreasing the EAWS (Ergonomic Assessment Worksheet 

Score). This approach allows for an early evaluation of worker well-being during the 

design phase, promoting the development of human-centric manufacturing processes. 

 

3.7 Feedback from Experts 
 

Following the CTI methodology presented in Chapter 2, experts in Industry 5.0 and 

Competitive Technology Intelligence were contacted via email during the process. 

The experts provided feedback to help construct the search query.  

 

3.8 Validation and Delivery of Final Results 
 
The expert’s feedback contributed to the final validation in parallel to the previous 

step. Vital aspects were validated, such as selecting the database, choosing 

keywords, formulating the final query, categorizing the results, and accurately 

analyzing the data. The publications utilized in the theoretical framework for 

Competitive Technology Intelligence, well-being, and Industry 5.0 provided additional 

reassurance for this study's findings. 

3.9 Decision Making 
 
The findings in this thesis provide a strong basis for informed decisions for research 

and development (R&D), and innovation. 
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Chapter 4: Discussion 

4.1 Introduction 
 
In the subsequent section, the 149 papers sourced from Chapter 3 will be detailed.  

Each human factor includes a brief description of its characteristics, its impact on 

workers' well-being and productivity, and the approaches discussed in this research. 

Lastly, the trends in technology and research related to how workers’ well-being 

influences productivity within the context of Industry 5.0 are presented. 

4.2 Human Factors 
 
The papers were categorized into six key human factors for assessing well-being and 

productivity in Industry 5.0: physical fatigue, attention, cognitive workload, stress, trust, 

and emotional assessment. 

4.2.1 Physical Fatigue 
 

Physical fatigue occurs when the body decreases its physical capabilities due to 

exertion (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). It can cause 

tiredness and mental, cardiovascular, or muscular fatigue that can affect any body 

part (Mahdavi, Dianat, Heidarimoghadam, Khotanlou, & Faradmal, 2020).  

 

Mahdavi et al. (2020) mention that fatigue can have both short-term and long-term 

consequences. In the short term, it may result in decreased strength, localized muscle 

fatigue, and impaired motor control, while long-term effects can include 

musculoskeletal disorders (MSDs) (Mahdavi, Dianat, Heidarimoghadam, Khotanlou, 

& Faradmal, 2020). The impact of physical fatigue, whether immediate or prolonged, 

can significantly affect a worker's productivity and overall well-being. MSDs are a 

recurring health issue among operators, often arising from the physical demands of 

their work (Pistolesi, Baldassini, & Lazzerini, 2024). Moreover, MSDs substantially 

impact employee well-being and overall task performance (Ling, et al., 2024). 

Therefore, organizations that take a proactive approach to addressing ergonomic 
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concerns can enhance productivity and performance while fostering the well-being of 

their employees. 

 

Various approaches have been explored to address physical fatigue in the workplace. 

This research categorizes the information into ergonomic interventions, advanced 

monitoring technologies, and dynamic task allocation systems to enhance 

understanding. 

 

4.2.1.1 Ergonomic Interventions 
 

Grandi et al. (2019) propose Human Modeling Software that simulates worker 

movements and postures in a virtual environment. This software enables ergonomic 

adjustments to workstation layouts, task sequences, or tools before physical 

implementation. They also present the EAWS (Ergonomic Assessment Worksheet), 

a tool for calculating the ergonomic risks associated with specific tasks. The EAWS 

tool is expected to help redesign tasks to improve worker comfort and safety. 

 

Ghorbani et al. (2024) developed a fuzzy fatigue model by combining Potvin’s fatigue 

model with the Fuzzy Inference System (FIS). Based on rules derived from ergonomic 

specialists' insights, this model provides actionable insights for managing ergonomic 

risks. The study assessed three scenarios with different thresholds for maximum 

allowable fatigue levels, referred to as Fmax. The scenarios included Fmax values of 

1, 0.75, and 0.5. The findings revealed a reduction in fatigue of 30%, 52%, and 81%, 

respectively, for each scenario. Moreover, it helps in work cell planning by 

categorizing fatigue levels, enabling designs that minimize potential fatigue. 

 

Falerni et al. (2024) introduce a novel approach called AmPL-RULA. This approach 

combines the Active Multi-Preference Learning (AmPL) algorithm with the Rapid 

Upper Limb Assessment (RULA). The AmPL algorithm offers qualitative feedback on 

user preferences, while RULA aids in assessing the ergonomic aspects of a task. The 

authors state that postural comfort and ergonomics are different; ergonomics 

emphasizes postures that prevent health issues, while comfort encompasses various 
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factors, including cognitive, physiological, and environmental. This research 

considers both user preferences and ergonomic principles. 

 

4.2.1.2 Advanced Monitoring Technologies 
 

In 2023, Chand et al. (2023) developed a personalized muscle fatigue profile using 

Surface Electromyography (s-EMG) technology to measure muscle strength and 

fatigue changes during dynamic manufacturing tasks in human-centric human-robot 

collaboration (HHRC) environments. The aim was to improve real-time monitoring of 

muscle performance through a noninvasive method. The research was conducted in 

three case scenarios: static hold, vertical handling, and pick and place operations. 

The results showed that static hold and pick and place operations present higher 

muscle fatigue with 25-50% relative task load. Furthermore, individuals with varying 

muscle strengths exhibited similar fatigue profiles under the same task load. This 

research, which effectively tracks muscle fatigue during dynamic operations, has 

potential applications for dynamic task allocation. 

 

Khamaisi et al. (2024) used a wearable motion capture suit to measure body postures 

in real-time during a standardized lifting task. The gathered data was utilized in the 

TACOs (Time-Based Assessment Computerized Strategy) methodology, which the 

authors proposed. This methodology emphasizes analyzing both the duration and 

severity of postures adopted by the spine and lower limbs during tasks.  

 
Pistolesi et al. (2024) propose a privacy-preserving posture-tracking system that uses 

a LiDAR (Laser Imaging Detection and Ranging) sensor and a smartwatch to monitor 

workers' postures. The system is designed to comprehensively assess the alignment 

of the trunk, shoulders, arms, and legs. It monitors the worker's posture with an 

impressive 98% accuracy, offering an alert mechanism that notifies users when their 

posture deviates from the ISO 11226 standard. Moreover, it safeguards privacy, as 

the system is designed to prevent the retention of sensitive information. 
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4.2.1.3 Task Allocation Systems 
 
Dynamic task allocation involves the real-time and adaptable assignment of tasks 

based on changing conditions in a collaborative workspace between humans and 

robots (Calzavara, et al., 2024). This system can monitor factors such as worker 

fatigue, performance metrics, and robot availability (Calzavara, et al., 2024). On the 

other hand, in static allocation systems, tasks are pre-assigned at the beginning of 

the shift and do not change under real-time conditions, which often fails to support 

operator well-being and environmental variability (Granata, Faccio, & Boschetti, 

Industry 5.0: prioritizing human comfort and productivity through collaborative robots 

and dynamic task allocation, 2024).  

	
Both Calzavara et al. (2023) and Boschetti et al. (2023) propose a multi-objective task 

allocation model to minimize the makespan, energy expenditure, and mental 

workload, using a static task allocation method as input (Boschetti et al., 2023). The 

model offers a range of options based on the makespan, energy expenditure, or 

mental workload. According to the authors, this method effectively balances 

productivity and well-being by optimizing task distribution between humans and 

collaborative robots. Furthermore, Calzavara et al. (2023) introduce a saturation 

constraint that allocates more tasks to the cobot, aiming to minimize the operator’s 

effort, even though it increases the makespan.  

 

Calzavara et al. (2023) describe the makespan as “the total time required to complete 

all tasks that must be performed“, the energy expenditure as “the energy required to 

both maintain the posture and to perform the job, which is measured by the duration, 

level, and repetitiveness of a physical job”, and mental workload as “the combination 

of all elements, both cognitive and emotional, that are related to the complexity of the 

tasks, limited resources, and feelings during work”, under this context mental 

workload is estimated through the CLAM (Cognitive Load Assessment for 

Manufacturing) index.  

 

Granata et al. (2024) and Calzavara et al. (2024) propose a dynamic task allocation 

system by monitoring real-time data on human variability. Unlike the multi-objective 

method, this method allows the reassignment of tasks between humans and cobots 
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under unexpected conditions such as the operator’s energy and stress levels. In both 

studies, only makespan and energy expenditure were considered. The results 

showed that this method can avoid overworking the operator, potentially improving 

well-being and productivity and preventing operator fatigue and the risk of stress. 

 

In conclusion, multi-objective task allocation presents an effective methodology for 

optimizing task assignments through the careful balancing of various objectives within 

a static framework. Conversely, dynamic task allocations facilitate adaptability and 

real-time adjustments, enabling them to respond effectively to immediate fluctuations 

and alterations in the task environment. 

 

Furthermore, while static systems are valuable for predetermined, stable 

environments, dynamic task allocation systems are essential for enhancing 

productivity and well-being. A human-centric task allocation system must be adaptive 

and prioritize both operational efficiency and human factors. Nevertheless, it's 

important to recognize that while implementing assistive technologies can support 

operators, these solutions may also present drawbacks, such as increased fatigue, 

workload, or injury risk (Lucchese & Mummolo, 2024). Therefore, it is essential to 

consider a range of different strategies for effectively assessing fatigue in the 

workplace, as this can significantly contribute to overall employee well-being and 

productivity.   

 

4.2.2 Attention 
 
Chun et al. (2011) define attention as the brain's capacity to focus on and process 

specific external or internal stimuli. According to them, this ability is essential due to 

the brain's limited capacity to handle information simultaneously. Under this context, 

attention serves as a mechanism that allows for the selection and concentration of 

information relevant to ongoing tasks. Forster and Lavie (2008) explain that a 

distraction occurs when attention shifts from one task to another due to external or 

internal stimuli that are unrelated to the task. On the contrary, concentration is the 

state of sustained attention on a specific task that requires both effort and cognitive 

resources (Chun, Golomb, & Turk-Browne, 2011). 
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This mechanism becomes especially important in industrial settings. Distractions or 

the operator's loss of attention can lead to significant safety risks (Simeone, Grant, 

Ye, & Caggiano, 2023), increased errors, and lower performance (Tortora, Pasquale, 

Franciosi, Miranda, & Iannonne, 2021). Therefore, continuously monitoring the 

operator’s attention (Simeone, Grant, Ye, & Caggiano, 2023) and addressing human 

factors like attention and focus (Tortora, Pasquale, Franciosi, Miranda, & Iannonne, 

2021) are critical to maintaining a secure workplace environment for the operator, 

minimizing errors, and increasing productivity. 

 

Various approaches have explored the impact of attention in the workplace. This 

research categorizes the information into concentration and distractions to enhance 

understanding. 

 

4.2.2.1 Concentration 
 
Rykala (2023) developed an algorithm for analyzing brain electrical activity through 

electroencephalography (EEG) signals. The aim of this evaluation was to assess the 

concentration levels of operators in real-time, especially during periods of extended 

working hours or in elevated temperature conditions while interacting with heavy 

machinery, such as unmanned ground vehicles (UGVs). The author employed EEG-

based biofeedback to monitor operators' concentration levels and provide feedback 

for increased awareness. The feedback was provided when concentration appeared 

to drop, and it could be delivered directly through notifications or indirectly by 

reviewing focus trends. Results accurately reflected the participants' conditions, 

indicating that the methodology was correct. This solution may provide an overview 

of machine operator concentration levels.  

 

In 2023, Helm et al. (2023) examined the source of errors in a warehouse using 

Intelligent Video Analysis (IVA). The IVA is a tool for recording, tracking, and 

analyzing warehouse operations. Cameras were strategically installed, synchronized 

with the Warehouse Management System (WMS), and analyzed by human operators. 

This tool was implemented in six case companies identified as A, B, C, D, E, and F. 
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The results indicated that confusion, lack of experience, distraction, stress, and 

carelessness are the main causes of errors. The authors also noted that the presence 

of cameras appeared to reduce errors, suggesting that operators tend to concentrate 

more when they feel they are being monitored. This conclusion was made after 

observing an 80% decrease in errors at Company F when using the IVA tool. 

 

4.2.2.2 Distraction 
 
Yin & Li (2023), Polito et al. (2023), and Al-qaness et al. (2023) examine how external 

stimuli affect human performance through attention. Although they use different 

experimental methods, both studies aim to evaluate the impact of distractions during 

task execution. 

 

Yin & Li (2023) explore how auditory noise affects attention in participants performing 

visual tasks using fan noise alone, fan with human noise, and fan with striking noises. 

Results indicated that under noisy conditions, participants, particularly those sensitive 

to noise, experienced longer task completion times and increased pupil dilation, which 

serves as an indicator of stress. This conclusion was reached after observing that 

individuals sensitive to noise took longer to complete tasks, with their time increasing 

from 1.74 seconds in a quiet environment to 2.77 seconds in the presence of fan 

noise combined with human sounds. Similarly, for individuals who are less sensitive 

to noise, their task completion time increased from 2.20 seconds in a quiet setting to 

2.84 seconds when exposed to noise from a fan along with striking sounds. 

 

Polito et al. (2023) examine how distractions, stress, or fatigue can lead to sudden 

movements during Human-Machine Interactions (HMI), potentially compromising 

safety. The authors propose wearable Magneto-Inertial Measurement Units (MIMUs) 

to monitor precise movement data. These MIMUs integrate accelerometers, 

gyroscopes, and magnetometers. The findings indicated a 99.25% accuracy rate with 

a precision of 85.23%, highlighting an effective method for detecting abrupt 

movements and enhancing operator safety in industrial settings.  
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Similarly to Polito et al. (2023), Al-qaness et al. (2023) focus on the importance of 

human activity recognition. The authors develop a model called Multi-ResAtt 

(multilevel residual network with attention) that utilizes data from wearable sensors, 

specifically Inertial Measurement Units (IMUs). The model processes and learns from 

IMU data to recognize complex human activities. The results showed that the Multi-

ResAtt model can reach up to 84.99% accuracy. 

 

Distractions that negatively impact attention, as demonstrated by Yin & Li (2023), can 

cause sudden movements during Human-Machine Interaction (HMI), jeopardizing the 

operator's safety. For this reason, Polito et al. (2023) and Al-Qaness et al. (2023) 

emphasize the importance of identifying human activities, such as abrupt movements 

in the workplace. 

 

These proposals emphasize the need for continuous monitoring of both attention and 

concentration to ensure safety, well-being, and optimal performance, particularly in 

environments where humans and machines work closely together. 

4.2.3 Cognitive Workload 
 

Cognitive workload refers to the balance between the resources the operator requires 

and those required by the task (See Figure 15) (Wickens, Gordon, & Liu, 2004). 

Cognitive workload is key to preserving a healthy and high-performing working 

environment (Ma, Monfared, Grant, & Goh, 2024). 
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Figure 15. Graphical Representation of Cognitive Workload Balance. 

(Own elaboration, 2024) 

 
An imbalance between these two resources could impact the operator's well-being 

and performance. For example, consider the amount of time a task requires 

compared to the time available to complete it. If the time needed for a task exceeds 

the time available for the operator to finish it, this results in an overload (Wickens, 

Gordon, & Liu, 2004). Equally, if the time needed for a task is low and the time 

available is too high, it can result in an underload. Although this example 

oversimplifies the complexities of the concept, it still serves as a useful starting point, 

given that other factors such as attention, information processing capacity, memory, 

and decision-making (Ma, Monfared, Grant, & Goh, 2024) influence it. 

 

Even though a newly implemented system in a work environment shows good 

performance, task performance can be reduced, and errors can increase if the 

operator experiences an excessive workload while using it (Wickens, Gordon, & Liu, 

2004). This reinforces the importance of constantly monitoring the operator’s 

cognitive workload to maintain their well-being and performance.  

 

Various approaches have been explored to address cognitive workload in the 

workplace. This research categorizes the information into subjective, objective and a 

combination of both to enhance understanding. 
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4.2.3.1 Subjective 
 
Javernik et al. (2023) used the NASA-TLX questionnaire to take a completely 

subjective approach. The authors found that Human-robot collaboration (HRC) 

significantly influenced worker workload. The study involved two case scenarios: 60% 

and 100% worker utilization, with the difference being the time given by the robot. 

The results showed a 34.7% increment in perceived workload when worker utilization 

increased from 60% to 100%. Additionally, the highest workload reported was in the 

TD (temporal demand) dimension of the questionnaire, which relates to the time 

pressure experienced by respondents. They recommend personalized guidelines for 

HRC workplaces that consider the operator’s abilities, skills, and personalities. This 

focus is aligned with Gualtieri et al. (2024), emphasizing guidelines for non-experts in 

Human-Robot Collaborative (HRC) assembly tasks to create effective, human-

centered HRC environments. 

 

4.2.3.2 Objective 
 
Cardiac activity and visual scanning are consistent and reliable parameters for 

measuring cognitive workload (Wickens, Gordon, & Liu, 2004). Cardiac activity is, 

however, the physiological metric most commonly utilized (Antonaci, et al., 2024). 

 

The authors Pluchino et al. (2023) and Ma et al. (2024) follow these parameters for 

their research. Pluchino et al. (2023) used eye-tracking and cardiac activity alongside 

the NASA-TLX questionnaire in an assembly task experiment with senior workers 

and a cobot. The authors evaluated mental workload under single-task, where only 

one assembly task was evaluated, and dual-task conditions, where two assembly 

tasks were required simultaneously. The results indicate that participants 

experienced a higher level of mental workload during the dual-task condition, with a 

median score of 100 and an average of 5.64 errors. In contrast, during the single-task 

condition, the median score was 45, and the average number of errors was just 0.81. 

Additionally, Senior operators exhibited a greater willingness to work with cobots, 

even though their cognitive workload and error rates increased. 
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Ma et al. (2024) conducted an experiment involving the assembly of a Wankel Engine, 

utilizing pupillometry and heart rate variability (HRV) measurements. The tasks were 

designed with varying complexities categorized as rest, low, medium, and high, and 

included both experts and non-experts. The results indicated that cognitive load 

increased with task complexity, accompanied by a decrease in heart rate variability 

under higher cognitive workloads. Furthermore, the authors discovered that experts 

experienced lower cognitive workloads compared to non-expert participants despite 

the task complexity. 

 

Both studies provide valuable strategies for designing and optimizing a workplace 

environment that considers operators' cognitive workload.  

 

4.2.3.3 Combined 
 
Zakeri et al. (2023) and Caiazzo et al. (2023) evaluated cognitive workload using the 

NASA-TLX questionnaire and electroencephalography (EEG). However, Zakeri et al. 

(2023) also integrated functional near-infrared spectroscopy (fNIRS) and auditory 

signals, referred to by the authors as beeps, to evaluate attention and reaction time. 

Both studies found reduced cognitive workload and enhanced performance when the 

participants worked with cobots.  

 

Zakeri et al. (2023) conducted an experiment involving a sorting task in which a 

collaborative robot (cobot) would present participants with a box. The participants had 

to decide where to place the box. Additionally, an extra task was introduced: 

participants would hear a beep and were required to press a foot pedal in response. 

The authors found that NASA-TLX scores were higher in conditions of high 

complexity compared to those of low complexity, indicating an increased mental 

workload. Reaction times also increased under high-stress conditions, especially 

when both task complexity and cobot speed were elevated, which pointed to a rise in 

cognitive workload and stress levels. Furthermore, in high-complexity scenarios, a 

greater number of beeps were missed, demonstrating how cognitive workload affects 

task performance. 
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Caiazzo et al. (2023) conducted an assembly task experiment in a standard scenario, 

where no robotic assistance was provided, and collaborative scenarios, with the same 

assembly task but with the assistance of a cobot. The authors observed a higher 

number of components correctly assembled in the collaborative scenario, resulting in 

higher productivity and a significant reduction in mental workload, as evaluated by 

EEG data and NASA-TLX scores.  

 
Nenna et al. (2023) studied the connection between cognitive workload, performance, 

and the Sense of Presence (SoP) in a VR-based telerobotic environment. Participants 

who reported a higher SoP completed the pick-and-place tasks faster than 

participants who reported a lower SoP. During the "pick" operation, the average time 

was 2.37 seconds for the high SoP group, while the low SoP group took 3.05 seconds. 

Similarly, for the "place" operation, the high SoP group completed it in 1.86 seconds, 

compared to 2.51 seconds for the low SoP group. The investigation concluded that a 

higher Sense of Presence (SoP) positively affects task performance and has a ‘little 

to no impact’ on cognitive workload. The results were obtained by administering the 

NASA-TLX for workload evaluation and the MEX-SPQ for SoP evaluation 

questionnaires to participants. Additionally, pupil size variation was measured using 

an eye headset integrated with an eye-tracking system.  

 

In summary, the subjective approach provides valuable insights into cognitive 

workload from the operator's perspective, whereas the objective approach employs 

data obtained through instrumentation. While the objective method is generally more 

suited for tasks requiring precise measurements, the subjective method effectively 

captures the operator’s experiences and perceived workload. Therefore, integrating 

both approaches may be beneficial for achieving a more comprehensive evaluation. 

4.2.4 Stress  
 
The authors Loizaga et al. (2023) define stress as “a condition in which 

unpredictability (absence of anticipatory response) and uncontrollability (delayed 

recovery of the response and presence of a typical neuroendocrine profile) are 

involved”. In other words, stress is a reaction to feeling unprepared and lacking 

control over events. Additionally, the author Blandino (2023) defines the work-related 
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phenomenon originating from stress as “a phenomenon that occurs when the work 

demands exceed the worker’s capacity to perform them”. 

 

This phenomenon is associated with several health issues, including an increased 

risk of musculoskeletal symptoms, mental health challenges like depression (Kim, et 

al., 2023) as well as decreased productivity at work (Chung, et al., 2023); (Blandino, 

2023); (Tran, et al., 2023). Therefore, organizations that take a proactive approach to 

addressing work-related stress concerns can enhance productivity and performance 

while fostering the well-being of their employees. 

 

Given stress's significant impact on well-being and productivity, numerous authors 

have conducted research to address this issue. Blandino (2023) and Ciccarelli et al. 

(2023) conducted a literature review on stress indicators, measurement 

methodologies, and the contextual factors influencing stress in smart and intelligent 

manufacturing systems. The measurement methods identified by the authors are 

categorized into three groups (See Figure 16):  

 

1. Physical: The physical evaluation includes indicators related to both posture and 

behavior. Posture is assessed using the Ovako Working Posture Analysis System 

(OWAS), the Rapid Entire Body Assessment (REBA), and the Rapid Upper Limb 

Assessment (RULA). Behavior indicators are determined by analyzing body 

language and indicators of hyperactivity. 

 

2. Physiological: The physiological evaluation includes various measures such as 

cardiac activity, electrodermal responses, respiratory rates, and indicators of brain 

activity. Key metrics used in this evaluation are Heart Rate Variability (HRV) and 

heart rate (HR) to assess cardiac function, along with Electrodermal Activity (EDA), 

which is measured through skin conductance to reflect nervous system responses. 

 

3. Psychological: The psychological assessment includes subjective measures, 

such as self-assessment questionnaires like the State-Trait Anxiety Inventory and 

the Perceived Stress Scale (PSS). 
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Figure 16. Stress Evaluation Elements. 

(Own elaboration, 2024) 

 

 

Ciccarelli et al. (2023) expand on these elements by exploring multimodal approaches 

to stress detection through integrating multiple methodologies and data types to 

increase accuracy.  

 

Studies discuss the influence of contextual and demographic factors on stress. For 

instance, Blandino (2023) and Gervasi et al. (2023) note how factors such as age, 

gender, experience level, and familiarity with collaborative robots impact stress 

perception and physiological responses. Similarly, Ciccarelli et al. (2023) emphasize 

that factors in the environment, such as time of day, temperature, and weather, can 

affect stress levels in real-world environments.  
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Furthermore, Ciccarelli et al. (2023) note that examining real-world environments can 

be particularly challenging due to unpredictable environmental factors. Similarly, Tran 

et al. (2023) conclude that assessing stress in real-world settings presents greater 

difficulties. They explain that this challenge arises because factors such as the work 

context, as well as individual physical and mental health, are often not considered in 

experiments conducted in real-world environments. 

 

This research categorizes the information into a real-world environment and 

laboratory-controlled environment to enhance understanding. 

 

4.2.4.1 Real-World Environment 
 

In 2023, Apraiz et al. (2023) proposed a protocol for measuring stress in a 

manufacturing environment in the “NO-STRESS Project”. The protocol consists of 

three phases that integrate physiological signals, performance indicators, as well as 

the operator’s perception of stress. Techniques such as self-assessment reports, 

electroencephalography (EEG), heart rate variability (HRV), galvanic skin response 

(GSR), and electromyography (EMG) are used to gather comprehensive data on 

stress levels. Additionally, performance indicators like task execution time, error 

rates, and production rates are evaluated. This protocol has proven effective for 

assessing stress levels in operators within manufacturing environments. As Blandino 

(2023), Apraiz et al. (2023) highlight the importance of standardizing and refining 

protocols to ensure measurement consistency across different industries. 

 

Furthermore, Verna et al. (2023) introduce a “Quality Map” as a proactive tool for 

monitoring product defectiveness and operator stress. The map enables the 

identification of critical points in production and facilitates real-time quality 

adjustments. The authors found these critical points often occur at stages of high task 

complexity, repetitive strain, or limited resources. This approach supports maintaining 

high standards while actively promoting worker health. As task complexity increases, 

worker stress levels also tend to rise. 
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4.2.4.2 Laboratory-Controlled Environment 
 

Aceta et al. (2022) introduced the KIDE4I (Knowledge-driven Dialogue framework for 

Industry) system designed to enhance natural language communication. The system 

allows workers to interact with machines through voice commands, reducing the need 

to memorize specific phrases. The authors conducted two case studies. The first 

involved a guide robot designed to provide navigation and information in response to 

user voice commands. The second involved a bin-picking robot that was programmed 

to sort items based on user specifications given through voice commands. The results 

indicated high completion rates for both use cases: 84% for the guide robot and 82% 

for the bin-picking robot. This suggests that the system effectively supported task 

execution in most instances. Additionally, the response times were approximately 

1.25 seconds for the guide robot and 0.75 seconds for the picking robot, contributing 

to increased productivity through a faster workflow. The authors highlight the 

importance of human-machine interactions in the context of Industry 5.0, noting that 

these interactions can either reduce or increase stress, depending on how intuitive 

the communication between workers and machines is. 

 

4.2.5 Trust 
 
Interactions between humans and robots are intended to reduce the operator's 

workload (Kambarov, Inoyatkhodjaev, Kunz, Brossog, & Franke, 2023). Building trust 

in interactions between operators and robots is essential for cultivating a secure and 

comfortable work environment alongside robots, which in turn enhances efficiency 

and productivity (Montini, et al., 2023). Additionally, trust is the second most 

frequently evaluated aspect in collaborative robotics environments (Coronado, et al., 

2022). 

 

Trust in human-AI teams is built on transparency and a shared understanding. 

According to Hosain et al. (2023), reducing the “black box” effect by providing clear 

explanations of how AI makes decisions can enhance user confidence. Endsley 

(2023) emphasizes that establishing a shared situational awareness within human-AI 

teams enables the AI to act in a predictable manner. This predictability supports 
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teamwork and fosters trust. Complementing these views, Balasubramaniam et al. 

(2023) point out that trust can be reinforced through ethical guidelines that ensure 

users can understand not only the actions of the systems but also the reasoning 

behind them. 

 

A lack of trust can lead to disengagement and decreased motivation, reducing 

worker’s willingness to put effort into their tasks (Fulmer & Gelfand, 2012). In 

automation, distrust can increase cognitive workload. Workers may allocate 

additional mental resources to verify the AI's actions, which can lead to faster fatigue 

and reduced situational awareness (de Visser, Pak, & Shaw, 2018). The authors Lee 

& See (2004) expand on the importance of establishing an appropriate level of trust 

in human-automation interaction, noting that both under-reliance and over-reliance 

can compromise safety and operational success. 

 

Therefore, organizations that take a proactive approach to addressing concerns 

about trust between workers and machines can enhance productivity and 

performance while fostering the well-being of their employees. 

 

Various approaches have been explored to address human-automation trust in the 

workplace. Some approaches involve both humans and robots, where the robot 

responds to the operator’s needs or feedback. Others focus solely on the operator's 

perspective, allowing trust to develop without needing the machine to adapt or 

respond. This research categorizes the information into dual-focus trust and operator-

only trust to enhance understanding. 

 

4.2.5.1 Dual-Focus 
 

Montini et al. (2023) and Kambarov et al. (2023) propose a structured framework for 

cultivating trust between humans and collaborative robots (cobots) by ensuring a 

human-aware, adaptable, and safe system.  

 

The framework of Montini et al. (2023) focuses on developing human-aware 

collaborative robotic systems through three key pillars: Humanization, Smartification, 
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and Automation & Equipment. Humanization emphasizes the integration of cobots 

into human work environments by addressing human factors such as safety, well-

being, and ergonomics. Smartification highlights the use of sensors and the Industrial 

Internet of Things (IIoT) to collect and analyze data, enabling informed decision-

making, adapting to environmental changes, and ensuring trust in collaborative 

systems. Lastly, Automation and Equipment focuses on selecting and configuring 

automation tools like cobots to ensure flexibility and adaptability in the work cell. This 

enhances productivity and operational effectiveness while maintaining human 

control.  

 

Kambarov et al. (2023) propose a human-centric human-robot communication 

(HCHRC) framework to boost productivity and support well-being in assembly 

operations. In this framework, humans and robots communicate in real-time through 

sensors, utilizing the following technologies: Human Speech Recognition, Aided 

Virtual Reality, Work Instruction Guiding, Assembly Object Recognition, Human 

Motion Prediction, and Hand Gesture Control (See Figure 17). 

 
Figure 17. Technologies for a Human-Centered Human-Robot Communication. 

(Own elaboration, 2024) 

 
 
Peruzzini et al. (2024) propose a Smart Manufacturing Systems Design (SMSD) 

framework that explores the concept of mutual learning between humans and 
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machines to enhance trust. This framework fosters a cooperative relationship inspired 

by natural ecosystems, utilizing digital replicas of humans, machines, and the 

environment to simulate and manage factory operations in real-time.  

 

Isaza Dominguez (2024) adds that digital twin technologies are crucial for improving 

worker safety, enhancing human-robot collaboration, and optimizing efficiency in 

manufacturing cells. However, these technologies are still limited in their ability to 

validate models in real-world settings (Isaza Domínguez, 2024). 

 

Barros et al. (2023) present a thermal imaging safety sensor that allows for real-time 

and cost-effective safety monitoring by detecting human presence around machinery, 

thereby preventing accidents. This method is low complexity, consumes little energy, 

and has a small footprint, avoiding reliance on complex algorithms that require 

training. 

 

4.2.5.2 Operator-Only 
 

Locatelli et al. (2024) and Panagou et al. (2024) discuss the significant impact of 

involving operators in the robot integration process on building trust. To achieve this, 

Locatelli et al. (2024) recommend using bottom-up strategies that encourage 

employees to participate in the innovation process. Additionally, they emphasize the 

importance of providing workers with evidence of effectiveness through 

experimentation and education about the technologies.  

 

Furthermore, Panagou et al. (2024) found that the robot’s appearance greatly 

influences human comfort and perceived reliability, which is why it is essential to 

include operators in the design and implementation phase. The authors recommend 

training operators before implementation to improve perceptual safety and reliability. 

 

Perceived safety plays a crucial role in building trust, as operators need to believe 

that robots will prioritize their interests and well-being (Apraiz, Mulet Alberola, Lasa, 

Mazmela, & Ngoc Nguyen, 2023).  
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In conclusion, building trust between humans and robots is essential for ensuring 

safe, productive, and efficient collaboration. Trust can be established through 

transparency in AI, shared situational awareness, and ethical guidelines that clarify 

robot actions (Hosain, et al., 2023); (Endsley, 2023); (Balasubramaniam, Kauppinen, 

Rannisto, Hiekkanen, & Kujala, 2023). Frameworks proposed by Montini et al. (2023) 

and Kambarov et al. (2023) incorporate human-centric designs and real-time 

adaptability to enhance operator comfort and trust. The involvement of the operator 

in the design process, as advocated by Locatelli et al. (2024) and Panagou et al. 

(2024), further improves perceived reliability. Additionally, technologies such as the 

thermal imaging safety sensor suggested by Barro et al. (2023) reinforce trust in 

collaborative environments through real-time monitoring. 

 

4.2.6 Emotional Assessment 
 

Emotions are mental states that occur in response to stimuli and are expressed 

through physical and physiological changes, influencing how individuals perceive and 

react to their environment (Ekman, 1992); (Loizaga, Toichoa Eyam, Bastida, & 

Martinez Lastra, 2023). According to Ekman (1992) emotions can be recognized 

through specific facial expressions specific to each emotion. Emotions play a 

significant role in work efficiency, decision-making, and interpersonal relationships, 

all of which directly affect industrial operations. (Loizaga, Toichoa Eyam, Bastida, & 

Martinez Lastra, 2023) 

 

Emotional assessment as a human factor in Industry 5.0 explores how human 

emotions influence interactions with external stimuli in industrial workplaces. It can 

be achieved through technology and robotic interactions that recognize human 

emotions and adjust accordingly (Tao, et al., 2023). Although technology plays a 

crucial role, it is not the only way to achieve emotional assessment.  

 

In 2021, Chin et al. (2021) studied emotional intelligence in the manufacturing 

industry workforce. They found that emotional management, which refers to “the 

ability to regulate positive and negative emotions within oneself and others”, and 
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emotional control, which refers to “the ability to control strong emotional states”, are 

strongly related to organizations’ performance. Similarly, Salvadorinho et al. (2023) 

state that happier, engaged, and empowered workers enhance competitive 

advantage by retaining human capital, which leads to more productive practices and 

innovative solutions, ultimately resulting in greater performance. 

 

Therefore, organizations that take a proactive approach to addressing emotional 

assessment can enhance productivity and performance while fostering the well-being 

of their employees. 

 

Various approaches have been explored to address emotional assessment in the 

workplace. This research categorizes the information into emotion-supportive and 

emotion-responsive to enhance understanding.  

 

The emotion-supportive category refers to how human emotions affect workplace 

interactions, focusing on the worker's perspective. In this context, technology does 

not need to respond to emotions directly; instead, it may serve as a tool for emotional 

assessment, improving understanding without necessitating an immediate reaction.  

 

On the other hand, the emotion-responsive category refers to how technologies react 

to workers' emotions. In this approach, the emphasis is on enhancing the 

technological response. Utilizing human emotions as a tool aims to enhance 

technology's sensitivity and response, ultimately fostering emotional well-being. In 

these applications, human emotions are assessed through real-time physiological 

metrics. 

 

4.2.6.1 Emotion-Supportive 
 
Sagar et al. (2023) emphasize meditation as a valuable organizational resource that 

enhances employee well-being and performance. The study employed the World 

Health Organization Quality of Life (WHOQOL) scale to evaluate meditation's impact 

on manufacturing company employees. The results showed significant improvements 

across all assessed areas: physical health, psychological well-being, social 
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relationships, and the work environment. The authors suggest that even if meditation 

does not improve employee performance, workers can still be trained in meditation 

techniques to address any shortcomings. They also recommend future research on 

virtual meditation programs integrating artificial intelligence (AI). 

 

Shukla et al. (2024) developed a Strategic HR Value Chain Model to evaluate human 

resource (HR) practices in relation to organizational objectives. The authors outline 

strategies for integrating remote work and worker skill development, supported by 

case studies. They suggest future use of the Metaverse to enhance virtual 

recruitment, engagement, and training, leading to technological innovation 

emphasizing empathy and inclusivity. 

 

Although the research conducted by Sagar et al. (2023) and Shukla et al. (2024) 

primarily emphasizes approaches that do not rely on technology, it also provides 

valuable insights into how these methods can be effectively enhanced through 

technological integration. 

 

Baroroh et al. (2024) analyze the advantages of Gamification for Manufacturing (GfM) 

in enhancing workers' psychological well-being while also promoting productivity. 

Based on their analysis, the authors propose a framework to guide the 

implementation of Gamification for Manufacturing (GfM) in Industry 5.0. This 

framework addresses both psychological well-being and productivity through game 

components. The framework is expected to enhance commitment, satisfaction, 

motivation, engagement, enjoyment, competition, collaboration, and social 

connectedness. Additionally, it is expected to improve productivity, efficiency, 

transparency, learning flow, and servitization.  

 

4.2.6.2 Emotion-Responsive 
 
Pierleoni et al. (2022) and Noori et al. (2024) explore an emotion-responsive 

approach that utilizes sensors and IoT devices to react to real-time data and adjust 

systems accordingly. Both studies primarily focus on dynamically modifying systems 

or environmental responses based on workers' data.  
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For instance, Pierleoni et al. (2022) examine the effects of lighting in industrial 

environments where workers often have limited exposure to natural daylight. They 

further state that variations in natural light influence emotions, mood, perception of 

space, concentration, and performance. Their study focuses on aligning artificial light 

with natural circadian rhythms, which are “internal processes that regulate the sleep-

wake cycle”. The goal is to develop a wireless sensor network based on the Internet 

of Things (IoT) that can control lighting systems in industrial settings according to 

these circadian rhythms. According to the authors, the system contributes positively 

to worker comfort, focus, and productivity. This approach is recommended for 

organizations with both day and night shifts. 

 

Noori et al. (2024) emphasize the importance of integrating human-in-the-loop (HiTL) 

and human Cyber-Physical Systems (CPS) within industrial environments. This 

integration allows systems to identify cognitive traits, roles, and interfaces in human-

machine interactions. As a result, the systems can adapt to meet human needs by 

monitoring worker emotional or physical conditions through real-time data. 

 

Abril-Jimenez et al. (2023) propose a self-quantified dashboard to improve emotional 

well-being and productivity through personalized self-management tools. The 

dashboard receives data through wearable devices and processes it with an 

algorithm developed by the authors that, as a result, provides personalized feedback 

and motivational messages. This promotes positive behavioral changes, enhancing 

well-being and productivity. 

 

In conclusion, emotion-supportive strategies such as meditation, human resources 

guidelines, and gamification can help create healthier environments by enabling 

individuals to understand, control, and manage their emotions. Furthermore, emotion-

responsive approaches, like IoT-driven lighting adjustments, can adapt to real-time 

emotional states to improve comfort and concentration. Assessing emotional well-

being in the workplace will boost motivation, enhance worker well-being, and improve 

overall performance. 
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4.3 Technologies 
 
The 149 papers discussed in Chapter 3 were categorized according to four key 

technological trends:  

 

1. The first trend emphasizes the importance of facilitating effective and natural 
communication between robots and humans. This section refers to this trend as 

“Facilitating natural communication” to help readers better understand it. 

2. The second trend focuses on optimizing work and workplace environments to 
enhance workers' well-being. In this section, this trend is referred to as “Modifying 

work environment” to help readers better understand it. 

3. The third trend relates to customizing technology to meet operators' individual 
needs. This section refers to this trend as “Customizing individual needs” to help 

readers better understand it. 

4. Lastly, the fourth trend concentrates on integrating monitoring technologies that 
assess workers' real-time physical, cognitive, or psychological state and 
provide accurate feedback. In this section, this trend is referred to as “Monitoring 

states and providing feedback” to help readers better understand it. 

 

Additionally, the relationship between human factors, previously discussed in Chapter 

4, section 4.2, and these trends will be examined and analyzed. The following bar 

chart presents each trend along with its associated human factors (See Figure 18). In 

other words, the graphic below illustrates the number of papers categorized under 

human factors that correspond to each specific trend. 
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Figure 18. Human Factor per Trend. 

(Own elaboration, 2024) 

 
The Y-axis represents the number of papers within each human factor, categorized 

according to the four identified trends. Facilitating effective and natural 

communication between robots and humans. Optimizing work and workplace 

environments to enhance workers' well-being. Customizing technology to meet 

operators' individual needs. Monitoring technologies that assess workers' physical, 

cognitive, or psychological states in real-time to provide accurate feedback. 

 

4.3.1 Facilitating effective and natural communication between robots and 
humans 
 
There is a growing trend of enhancing effective and natural communication between 

robots and humans. The aim is to develop technologies and strategies that bridge the 

gap between human communication styles and robotic systems, ensuring seamless 

communication.  

 

According to Alves et al. (2023), human-robot interaction can facilitate the transition 

from digitally system-centric to operator-centric production. The authors further state 

that human-robot interaction, collaborative robots, digital twins, augmented reality, 
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and virtual reality are technologies primarily centered on communication, signifying 

that their foremost objective is to facilitate interaction with the operator.  

 

Improving communication between robots and humans is essential for fostering trust 

among workers in the workplace. A higher level of trust creates a safe and 

comfortable environment for human-robot interactions, which, in turn, increases 

employee engagement and motivation. As a result, workers feel encouraged to put in 

more effort and fully utilize the systems available to them, leading to improved 

productivity. 

 

Conversely, when trust is lacking—known as under-reliance—employees face a 

heavier cognitive workload as they expend extra mental energy verifying the system's 

decisions. On the other hand, excessive trust—referred to as over-reliance—can 

compromise worker safety. To address these challenges, it is crucial to enhance 

communication between humans and robots. 

 

Lu et al. (2022) introduce the concept of "short-term human intent understanding" 

(See Figure 19), which describes how robots interpret and respond to human 

intentions at three distinct levels of understanding: Instruction Understanding (IU), 

Action Understanding (AU), and Goal Understanding (GU). Instruction Understanding 

involves decoding explicit instructions from the operator. Action Understanding refers 

to predicting an action or motion, enabling the machine to infer meaning based on 

the operator's actions. Finally, Goal Understanding entails inferring a human's 

objective by identifying a set of associated actions.  

 

To achieve this, Lu et al. (2022) identify two types of communication between humans 

and robots: direct communication and indirect observation. In direct communication, 

humans interact directly with the robot, while in indirect observation, the robot 

observes human behaviors to determine how to respond (See Figure 19). Each type 

of communication relies on specific devices to facilitate interaction, including 

microphones, cameras, and sensors that capture biological or motion data. 
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Figure 19. Short-term Human Intent Understanding visualization. 

(Own elaboration, 2024) 

 
 
These tools facilitate effective communication between robots and humans, 

supporting Industry 5.0's vision of intuitive and collaborative human robots. 

Furthermore, it closes the gap between human communication styles and robotic 

systems. 

 

Building on the concept presented by Lu et al. (2022), Aceta et al. (2024) propose a 

method for seamless direct communication, specifically through the operators' 

speech. The authors introduce the Knowledge-driven Dialogue Framework for 

Industry (KIDE4I), allowing workers to interact smoothly with industrial systems. 

Through voice commands, operators can communicate directly with the KIDE4I, 

which intelligently extracts essential elements from these commands and implements 

them in the target system. This study aims to facilitate communication between 

humans and robots, enabling workers to see the system as a valuable tool that boosts 

productivity.  

 

Helm et al. (2023) propose Intelligent Video Analysis (IVA) as a method for monitoring 

and detecting operator errors. While current research focuses solely on detection 
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without providing feedback, this serves as a strong foundation for developing a real-

time IVA system. This system would utilize artificial intelligence to offer feedback to 

operators. According to the model presented by Lu et al. (2022), IVA falls under the 

category of indirect observation communication, specifically through action.  

 

Kambarov et al. (2023) emphasize the importance of designing user-friendly 

interfaces that enhance communication between operators and robots. The authors 

further assert that providing input to the robots should be intuitive for the workers. 

Additionally, the information provided by the robots should be sufficient to create 

situational awareness, enabling interventions in unexpected situations. Thus, the 

authors propose the Human-Centered Human-Robot Communication (HCHRC) 

framework, which consists of a set of technologies that aid the communication 

between humans and robots (See  Figure 17). 

 

Moreover, the necessity of establishing trust profoundly affects the tendency toward 

fostering effective and natural communication between humans and robots. Figure 

18 illustrates this, indicating that trust is the most notable human factor in this trend. 

As Chapter 4, Section 4.2.5 articulated, this underscores the significance of 

developing communication systems that enhance confidence through dual-focus 

interactions and operator-exclusive scenarios. 

 

4.3.2 Optimizing work and workplace environments to enhance workers' well-
being 
 
There is a growing trend of dynamically using technology to modify and optimize work 

and workplace environments to enhance employee well-being. This shift emphasizes 

developing adaptive, human-centered workplaces where technology enhances 

health, comfort, and productivity through task or environmental adjustments. 

 

This direction is significant, especially for organizations where employees experience 

high levels of physical fatigue. Embracing this trend has the potential to enhance 

employee well-being by reducing the likelihood of musculoskeletal disorders (MSDs). 

As discussed in Chapter 4, Section 4.2.1, MSDs adversely affect the speed and 
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accuracy of work tasks, leading to a rise in errors and an increased risk of injury, 

ultimately impacting overall employee performance. 

 

Pokorni et al. (2022) developed a Cognitive Assistance System based on Quality 

Function Deployment (CAS-QFD). This system aims to design and implement 

assistance tools centered around workers' needs while optimizing their work 

environment to enhance productivity and well-being. The authors identify three 

changeable environmental influences impacting workers' well-being and in 

consequence their productivity (See Figure 20). Each type of influence comprises 

different factors that can be adjusted through inputs. These inputs gather information 

from the worker, analyze it, and produce an output that optimizes the environment. 

This system proposes to involve workers throughout all the steps of the process. 

 

 
Figure 20. Environmental influence factors, inputs, and outputs. 

(Own elaboration, 2024) 
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The case study Pokorni et al. (2022) investigated a manual assembly process within 

an industrial environment, highlighting the key challenges faced by workers. These 

challenges include difficulties understanding complex instructions, high error rates 

caused by poor lighting and noise, and insufficient guidance for inexperienced 

employees. Data collected from interviews and surveys revealed that workers 

prioritized clear instructions, while the business emphasized reducing errors and 

enhancing task efficiency. This information was analyzed and mapped to specific 

assembly tasks, identifying necessary environmental adjustments to improve overall 

performance. The cognitive assistance system was prototyped and implemented to 

address these specific needs in assembly tasks. In this case, the system provided 

real-time visual instructions through augmented reality and alerted workers to 

potential errors. Interaction methods include touchscreens and voice commands, 

while outputs comprise projectors, augmented reality overlays, and wearable 

devices. The prototype led to adjustments based on worker feedback, such as adding 

detailed overlays for clarity, switching from auditory to visual instructions when noise 

interfered, and adjusting lighting to reduce eye strain. Additionally, the prototyped 

system led to three key findings: increased productivity as workers completed tasks 

faster, enhanced quality with reduced error rates from real-time guidance, and 

improved worker satisfaction, marked by lower stress and greater confidence in skills. 

 

In addition, Pierleoni et al. (2022) introduced an IoT-based wireless sensor network 

highlighting the importance of lighting control systems in regulating circadian rhythms. 

This IoT solution utilizes sensor networks for real-time control and monitoring of 

lighting systems. Its primary goal is to enhance visual comfort, boost worker well-

being, and improve productivity in industrial environments. By dynamically adjusting 

artificial lighting to mimic natural light, the system regulates light intensity and color 

temperature to create optimal conditions focused on adapting to workers' needs. The 

study reveals that variations in natural light affect emotions, concentration, and overall 

performance. Ultimately, this system improves industrial workflows and worker 

conditions for both day and night shifts. 

 

However, improving and optimizing the work environment can be achieved not only 

by adjusting the factors identified by Pokorni et al. (2022), such as lighting, humidity, 

and noise, but also by considering other important variables. These include the 
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distribution of tasks between humans and robots and adjustments to machine 

operations, such as speed, stiffness, and workload distribution. 

 

Picone et al. (2024) introduce the Operator Thing (OT) concept, which digitalizes 

human operators and machines to create a responsive industrial environment that 

adapts to human needs in real-time. This system acts as a digital twin, collecting and 

analyzing biometric and behavioral data, including parameters such as heart rate and 

stress indicators. It responds dynamically by offering physical assistance, such as 

adjusting the stiffness of robots or modifying their load-carrying behavior. The system 

can also adjust operational speed to slow down processes when the operator shows 

signs of being overworked or stressed. Depending on the operator's assessed fatigue 

or stress levels, the system may also reassign tasks as needed.  

 

As shown in Figure 18, physical fatigue is the most prominent human factor that this 

trend should address. This aligns with the categorized approaches for that factor: 

ergonomic interventions, advanced monitoring technologies, and dynamic task 

allocation systems, presented in Chapter 4, section 4.2.1. Nevertheless, integrating 

cognitive workload, stress, and emotional assessment considerations is essential for 

effectively addressing the modification and optimization of the work environment. 

 

4.3.3 Customizing technology to address individual needs 
 
There is also a growing trend toward customizing technology to meet operators' 

individual needs. This trend emphasizes personalized technologies and systems that 

cater to individual workers’ unique physical, mental, and emotional characteristics. 

The goal is to foster inclusive and supportive work environments. 

 

In this context, Chand et al. (2023) highlight the necessity of personalized fatigue 

assessment for manufacturing workers, considering their differences in operator 

muscle strength, operation type, and task loads. The authors explain that assessing 

different capabilities and muscle strengths can minimize long-term injuries. To 

achieve this, the authors developed a personalized muscle fatigue profile using s-

EMG technologies to measure operators’ neuromuscular activity. Later that same 
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year, in the NAMRC 51,2023 conference, Chand and Lu (2023) incorporated the 

personalized muscle fatigue profile to enhance their approach to managing fatigue 

accumulation across teams. They focused on balancing fatigue accumulation and 

recovery rates to balance these factors better. 

 

Yin & Li (2023) researched the impact of various noise types in manufacturing 

environments on individuals with different sensitivities to sound. The authors 

identified fan noise, noisy human voices, and striking workpiece noise as the most 

common types. The participants of the experiment were divided into two groups: 

“noise-sensitive” and “noise-insensitive”. Each participant completed a visual search 

task while wearing headphones that played different noise types, and an eye tracker 

monitored pupil changes and visual focus areas. The key findings revealed that the 

noise-sensitive group experienced longer delays in completing the task and had 

slower reaction times compared to their noise-insensitive counterparts. Additionally, 

there were significant increases in pupil diameter among the noise-sensitive 

participants, indicating elevated anxiety levels. The analysis of visual focus also 

demonstrated that this group tended to shift their attention away from the target more 

significantly during noisy conditions. These findings highlight the need for 

personalized tools and systems to accommodate individual differences in noise 

sensitivity and cognitive responses.  

 

Javernik et al. (2023) propose personalized guidelines to better meet the needs of 

individual workers by adjusting robot motion parameters. This personalization 

involves modifying aspects like the speed and timing of the robot's movements to 

align with each worker's physical and cognitive abilities. The authors conducted an 

experiment involving two scenarios, each with different robot motion parameters and 

varying levels of worker utilization. In the first scenario, robot parameters were 

adjusted to enable workers to operate at 60% of their capacity, while in the second 

scenario, workers operated at 100% capacity. Worker utilization is calculated based 

on the time spent by workers on preparation and final assembly, relative to the robot’s 

operating time. The key findings indicate that an increase in worker utilization resulted 

in a significant 35% increase in workload. These findings underscore the importance 

of personalized guidelines in collaborative workplaces, which consider workers' 

differing abilities, skills, and personalities. 
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Margolis et al. (2024) conducted an experiment to evaluate how different 

backgrounds can affect a worker's perspective on technology, particularly, on 

augmented reality. The authors analyzed and compared three distinct user profiles. 

The first user profile, known as the Human Factors (HF) participants, consisted of 

individuals experienced in usability and perception. The second user profile, referred 

to as the System Development (SD) group, was composed of individuals with 

backgrounds in IT, engineering, or computing. Finally, the third user profile, called the 

General Users (GU) group, included individuals from various backgrounds, excluding 

those with expertise in IT, design, or user experience. All distinct user profiles utilized 

an augmented reality application with the intention of analyzing and comparing the 

user experiences based on their profiles. The results demonstrated differences in 

how each user profile perceived the use of the augmented reality application, 

depending on their backgrounds. These findings highlight the importance of 

personalizing technology that considers individual worker backgrounds to enhance 

employee satisfaction and, in turn, improve overall output. 

 

As shown in Figure 18, cognitive workload and emotional assessment are the most 

significant factors that this trend should address. This aligns with the approaches 

discussed in Chapter 4, sections 4.2.3 and 4.2.6. These approaches primarily focus 

on analyzing workers' perspectives, which is consistent with the trend of directing 

technology to meet individual workers' needs. 

 

When technology or systems are customized to meet the specific needs of individual 

workers, their overall well-being is improved by reducing cognitive workload and 

preventing overload. Overload can lead to stress, while the opposite—underload—

can result in disengagement and diminished motivation at work. By effectively 

managing workers' cognitive workloads, productivity tends to rise and error rates tend 

to drop. Therefore, customizing technology can be particularly advantageous for 

companies with fluctuating task volumes, as it helps balance instances of cognitive 

overload and underload. 

 

Another significant advantage of customizing technology to fit workers' individual 

needs is its ability to aid in emotional management. When operators feel more 
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comfortable with the tools and systems they use, they can better navigate their 

emotions. Since emotions play a crucial role in efficiency and decision-making, which 

directly impacts productivity, organizations can benefit from offering technologies that 

match each worker’s unique characteristics. This approach is especially relevant for 

roles that involve frequent decision-making, as it helps ensure that emotional states 

do not negatively affect performance. 

 

4.3.4 Monitoring workers’ physical, cognitive, or psychological state in real-
time to provide feedback  
 
There is a growing trend to integrate technologies that monitor workers' conditions in 

real-time. These technologies offer precise feedback to enhance employee 

awareness and well-being through notifications and recommendations based on their 

states, which, according to Lu et al. (2022), can be categorized as physical, cognitive, 

or psychological. The aim is to deliver actionable insights or real-time alerts regarding 

their well-being.   

 

Pistolesi et al. (2024) present a privacy-preserving posture-tracking system that 

monitors workers' postures and provides feedback whenever deviations from the ISO 

11226 standard are detected. The tracking system employs Laser Imaging Detection 

and Ranging (LiDAR) to assess the lower-body postures, while a smartwatch 

assesses the upper-body positions.  The data collected from both the LiDAR and the 

smartwatch is then processed using machine learning algorithms to identify risky 

postures and suggest improvements. Alerts are sent directly to the smartwatch, 

enabling users to take immediate action to correct their posture when it strays from 

the ISO 11226 standard. Furthermore, the system was tested on 30 participants 

engaged in six different manufacturing tasks, yielding impressive accuracy rates of 

98%. The system successfully preserves workers' privacy without sacrificing 

functionality by utilizing inertial data from a smartwatch and LiDAR instead of 

cameras. Additionally, workers receive real-time notifications on their smartwatches 

to adjust their posture; these posture records are stored and analyzed for long-term 

ergonomic improvements, potentially paving the way for personalized training 

programs. 



   
 

 165 

 

Lemos et al. (2024) introduced a system for assessing personalized environmental 

risks through the use of monitoring devices. This system includes an alert and 

recommendation feature to reduce workplace exposure risks. It continuously tracks 

environmental factors such as dust, noise, ultraviolet radiation, illuminance, 

temperature, humidity, and the presence of flammable gases. In addition, the system 

gathers workers' health data, focusing on diseases and symptoms linked to these 

monitored environmental factors. The development of criteria for identifying these 

diseases and symptoms was informed by recent research and collaborations with two 

physicians. A central server plays a key role by cross-referencing environmental 

factors with workers’ health histories, which are classified as risks or non-risk 

environments, using a random forest machine learning model. Furthermore, the 

recommendation system is also powered by a machine-learning model that 

generates alerts based on environmental classifications. The authors' primary 

objective is to enhance workplace safety by merging individual health histories with 

real-time monitoring of environmental conditions. This integration offers actionable 

insights for both companies and employees, optimizes safety practices, and 

minimizes exposure to harmful environmental elements. Notably, the system’s key 

findings highlight the effective personalization of risk assessment through generated 

alerts and recommendations, alongside its potential for scalability and adaptability, 

allowing expansion into other work environments by incorporating additional sensors. 

 

Nguyen et al. (2024) integrate concepts proposed by Pistolesi et al. (2024) and 

Lemos et al. (2024). This integration involves monitoring workers' postures and 

environmental factors to promote proactive prevention. The collected data is then 

analyzed, providing real-time notifications through wearable devices when workers’ 

postures deviate from recommended ergonomic standards, thereby reducing health 

risks such as musculoskeletal disorders (MSDs). Additionally, workers are alerted to 

take corrective actions when immediate risks are identified, such as extreme 

temperatures, high noise levels, or poor air quality. The authors propose integrating 

Artificial Intelligence to offer personalized, real-time insights and decision-making 

capabilities, reducing latency and enhancing worker safety. Moreover, the 

combination of real-time interventions and data insights may aid in designing safer 

work environments. 
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As shown in Figure 18, stress is the most significant factor that this trend should 

address. This aligns with the approaches discussed in Chapter 4, Section 4.2.4, 

which primarily focus on assessing real-time conditions to facilitate both immediate 

and long-term adjustments. However, attention is also crucial for this trend due to the 

necessity of immediate risk assessments, which can help identify safety risks arising 

from distractions or lack of concentration, as discussed in Chapter 4, Section 4.2.2. 

 
Stress arises from employees having limited ability to anticipate and control their 

circumstances. One effective approach to reduce stress-related issues is the 

implementation of enhanced real-time feedback methods. These methods give 

workers greater autonomy over their health in the workplace. Organizations need to 

address stress within their environments, as its prevalence among employees can 

lead to various health problems, including musculoskeletal disorders and depression. 

Additionally, the effects of stress go beyond employee well-being; it also negatively 

impacts performance by increasing task completion times and error rates, which 

ultimately leads to decreased productivity. This is specially relevant for companies 

facing high production pressures, such as those using the just-in-time (JIT) 

manufacturing model. 
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Chapter 5: Conclusions and Recommendations 
 

5.1 Introduction 
 
This chapter delineates the research conclusions regarding the influence of workers' 

well-being on productivity within the framework of Industry 5.0, accompanied by 

recommendations for academics and companies derived from the findings of this 

thesis. 

5.2 Conclusions 
 
This research utilized the Competitive Technology Intelligence (CTI) methodology to 

identify the trends related to the human-centricity pillar of Industry 5.0. Scientometrics 

was used as part of the CTI methodology combined with PRISMA guidelines to reveal 

these trends. Additionally, the research provided recommendations for companies 

aiming to become more human-centric and suggested areas for further research for 

academics. 

  

The academic sources were obtained from the Scopus database and cover the period 

from January 1, 2019, to October 1, 2024. This research focused on Industry 5.0, 

specifically on the influence of workers’ well-being on productivity.  

 

Furthermore, to improve the work's reproducibility, the PRISMA methodology was 

incorporated into the CTI methodology (See Table 2). During this process, it was 

observed that the CTI methodology already covered some of the PRISMA steps, but 

PRISMA complemented some of the CTI steps.  

 

1. The Information Sources stage outlined by the PRISMA methodology includes 

database selection and time filters. This task is addressed in the identification 

of data sources stage from the CTI.  

2. While the Search Strategy phase outlined by the PRISMA methodology 

recommends selecting keywords using the PICO framework, this research 

utilized one of its variants, the PEO framework. Additionally, the CTI 
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methodology advocates selecting keywords through a literature review. By 

integrating these two methodologies, the robustness and reliability of the 

keyword selection for the secondary source search were enhanced. 

3. The query construction and execution stage from the PRISMA methodology 

involves the final composed query and its results. This task is part of the search 

strategy design outlined by the CTI methodology. 

4. The CTI methodology outlines a process for normalizing and preparing 

information to ensure data consistency and proper formatting. The PRISMA 

methodology effectively complements CTI by providing standardized 

guidelines. PRISMA includes the eligibility element, which involves inclusion 

and exclusion criteria, and defines the screening process necessary to apply 

them. This process involves analyzing the study’s titles and abstracts to 

identify those that may not align with the research topic. 

5. The Quality Assessment phase of the PRISMA methodology is included in the 

Data collection stage of the CTI methodology.  

6. The PRISMA methodology features a bibliometric findings phase, which is part 

of the information analysis stage within the CTI methodology. Both offer 

quantitative data.  The PRISMA methodology highlights the time distribution of 

publications, the distribution of document types, the distribution of publication 

sources, and a word cloud representation. The CTI methodology expands on 

this by addressing fundamental questions, known as the five Ws, that are 

relevant to the research.  

7. The PRISMA methodology encompasses a literature review results stage that 

highlights each study’s essential characteristics. While PRISMA generally 

works with a smaller volume of data, CTI is designed to analyze larger datasets 

and offers more flexible criteria. In this research, the detailed literature review 

guidelines from PRISMA were implemented. This approach proved beneficial 

by facilitating the identification of similarities and differences across the 

studies, ultimately fostering deeper insights. 

 

Six key human factors are crucial in shaping well-being and productivity in Industry 

5.0 (Loizaga, Toichoa Eyam, Bastida, & Martinez Lastra, 2023). This research 

focuses on the factors identified by Loizaga et al. (2023): physical fatigue, attention, 

cognitive workload, stress, trust, and emotional assessment. Additionally, it found that 
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each factor assesses workers’ well-being and productivity differently and requires 

customized approaches combining technological and human-centered strategies 

(See Table 11). 

 

Table 11. Summary Human Factors. 

(Own elaboration, 2024) 

Number 
of 

Papers 

Human 
Factor 

Well-being 
impact 

Productivity 
impact 

Approaches 

39 
Physical 
Fatigue 

Short-term: 
Decreased strength, 

localized muscle 

fatigue, and impaired 

motor control MSDs are recurrent 

among industrial 
operators; they 

arise from work 

demands. Reduced 

speed, and 

precision, and 

increased errors 

and risks of injury 

Ergonomic 
interventions: Task and 

workplace re(designs) 

Long-term: 
Musculoskeletal 

disorders (MSDs) 

Advanced monitoring 
technologies: 

Wearables to identify bad 

postures or muscle 

fatigue 

Dynamic task allocation 
systems: Strategic 

assigment of tasks 

according to metrics such 
as makespan, energy 

expenditure, and mental 

workload 

6 Attention Safety risks 
Increased errors, 

anxiety 

Distraction: Eliminate 

external stimulation that 

can lead to safety risks 

through distractions. 

Technology that reacts to 
signs of distractions, such 

as abrupt movements 

Concentration: Increase 

concentration awareness 

through notifications or 

the sensation of being 

monitored 
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34 
Cognitive 
Workload 

Overload: Time 
needed for a task 

exceeds the time 

available for the 

operator may lead to 

stress 

Task performance 

decreases and 

errors increase 

when operators 

percieve excessive 

workload 

Subjective: Evaluation of 

perceived work overload 

by the operator through 

questionnaires 

Objective: Frequently 

evaluated through cardiac 
activity and visual 

scanning – Heart rate 

variability (HRV), 

Pupillometry, 

Electroencephalography 

(EEG), Auditory signals, 

and Near-infrared 
spectroscopy (fNIRS) 

Underload: Time 

needed for a task is 

too low compared to 

the time available for 

the operator may lead 

to disengagement, 

lack of motivation 

Combination: Integratin 

both approaches may be 

beneficial for achieving a 

more comprehensive 

evaluation 

15 Stress 

Feeling unprepared 

and lack of control 

which is related with 

health issues such as 
MSDs and depression 

Task execution time 

and error rates 

increase, 

production rates 
decreased 

Real-world 
environment: The goal is 

to assess real-time 

conditions in order to 

make immediate 

adjustments. 

Laboratory-controlled 
environment: Evaluation 

of stress and 
performance in a 

controlled environment. It 

does not consider 

external factors. The goal 

is to make long term 

adjustments 

30 Trust 
Disengagement and 

decreased motivation, 
reducing worker's 

Under-reliance: 
Increase cognitive 

workload because 
they may give 

Dual-focus: Involve 

humans and robots, 
where robots respond to 
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willingness to put effort 

in their tasks 

additional mental 

resources to verify 

the system actions, 

this leads to faster 

fatigue and reduced 
situational 

awareness 

the operator’s needs or 

feedback 

Over-reliance: can 

compromise safety 

Operator-Only: Develop 

trust through the 

operator’s perspective, 

without the need for the 

machine to respond 

25 
Emotional 

Assessment 

Lack of ability to 

regulate positive and 

negative emotions 

within oneself and 

other 

Poor work 
efficiency, decision-

making, and 

interpersonal 

relationships. 

Happier, engaged 

and empowered 

workers enhance 
competitive 

advantage by 

retaining human 

capital 

Emotion-supportive: 
Technology serves as a 

tool for emotional 

assessment, helping 

operators enhance their 

understanding of 

emotions instead of 

reacting to them 

Emotion-responsive: 
Technologies react to 

workers’ emotions. 

Humans emotions are 

used as a tool to enhance 

technology’s sensitivity 

and response 

 

 

In the "physical Fatigue" factor, ergonomic interventions focus on designing or 

adjusting workspaces that minimize potential fatigue. Additionally, advanced 

monitoring employs real-time tracking technologies to analyze data and enables 

personalized feedback that prevents overexertion or bad postures. Dynamic task 

allocation systems adjust task assignments based on workers' physical conditions, 

ensuring a balanced workload with the help of collaborative robots. 

 

The " attention" factor encompasses technological methods that enhance operators' 

awareness of their concentration level, allowing them to adjust as necessary. An 
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alternative approach to address attention is minimizing external stimuli that can lead 

to distractions, which could endanger the operator's safety. 

 

Pertaining to "cognitive workload," trends can be categorized into subjective, 

objective, and combined approaches. Subjective methods include qualitative tools, 

such as the NASA-TLX questionnaire, which gathers insights from the operator's 

perspective. Meanwhile, objective methods provide precise data using technologies 

like eye tracking, heart-rate variability (HRV), and pupillometry. Currently, the most 

adopted technology for objectively measuring cognitive workload is cardiac activity. 

Lastly, combined approaches integrate both methods to achieve a more 

comprehensive evaluation. 

 

The " stress " factor can be measured through physical, physiological, and 

psychological assessments. Physical assessments evaluate posture and behavior 

using tools such as the OWAS and RULA systems. Physiological assessments track 

bodily responses, including heart rate variability (HRV) and electrodermal activity 

(EDA). Lastly, psychological measurements involve self-assessment questionnaires, 

such as the Perceived Stress Scale (PSS). These assessments are used in both real-

world and controlled laboratory experiments. It was found that real-world stress 

monitoring presents greater challenges due to variable environmental conditions. 

 

Concerning “trust”, dual-focused and operator-only approaches were outlined. Dual-

focus is based on building mutual trust between humans and robots through 

technologies proposed in the human-centric human-robot communication (HCHRC) 

framework shown in section 4.6.1, Figure 17. Operator-only focuses on involving 

operators directly in the robot design and integration process by incorporating the 

operator’s feedback and training in the early stages.  

 

Finally, “emotional assessment” approaches were outlined and categorized into 

emotion-supportive and emotion-responsive. Emotion-supportive focuses on 

fostering emotional well-being, whether it’s without technology, through strategies like 

meditation, or by using technology as a tool, such as gamification. The main point is 

that emotion-supportive technology does not expect real-time reactive responses. On 

the other hand, emotion-responsive approaches use real-time data from sensors or 
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IoT devices to dynamically adjust environmental conditions to aid workers’ emotional 

states. 

 

Many studies propose innovative approaches that have yet to be tested in laboratory 

or field settings. As a result, not all research includes quantitative data regarding the 

impact of these approaches on workers’ well-being or their measurable effects on 

productivity. 

 

Based on the human factors analysis, the following trends have emerged:  

 

1. The first trend emphasizes the importance of facilitating effective and natural 
communication between robots and humans.  

2. The second trend focuses on modifying and optimizing work and workplace 
environments to enhance workers' well-being. 
3. The third trend relates to customizing technology to meet operators' individual 
needs.  

4. Lastly, the fourth trend concentrates on monitoring workers’ physical, cognitive, 
or psychological state in real-time to provide feedback. 
 

In conclusion, the analysis of human factors underscores four principal trends 

focused on enhancing the well-being of workers while also influencing productivity. 

These trends indicate an increasing emphasis on human-centered methodologies 

within technological frameworks, prioritizing the well-being of employees in Industry 

5.0 settings. 

 

 

 

 

 

 

 

 

 

 



   
 

 174 

5.3 Recommendations for Academics 

5.3.1 General Recommendations 
• Due to the rapid development of Industry 5.0, it is recommended that ongoing 

exploration of Industry 5.0 focus on advancing human-centric manufacturing, 

specifically worker well-being and productivity.  

• It is suggested that organizational reports on strategies for enhancing worker 

well-being and their influence on productivity be explored to gain valuable 

insights and estimate costs.  

• It is advisable that additional academic sources, such as the Web of Science 

or Google Scholar be utilized. This thesis focused on the Scopus database. 

• Further investigation into attention and stress as human factors in industrial 

environments is desirable. These factors are often overlooked, highlighting a 

significant gap that could lead to more research discussions. 

 

5.3.2 Specific Recommendations 
• There is a need for further research into how to effectively integrate senior 

workers with collaborative robots without increasing their cognitive workload 

or error rates. A study by Pluchino et al. (2023) indicates that although senior 

workers are willing to collaborate with robots, this partnership can lead to 

greater mental strain. Therefore, this thesis suggests conducting experimental 

research to devise and test adaptive human-robot interaction strategies that 

minimize cognitive burden while ensuring both efficiency and accuracy. To 

achieve this, it is recommended to follow the approach outlined in the first 

trend, which emphasizes the importance of fostering effective and natural 

communication. Since trust is a crucial human factor in this context, it is 

possible that senior workers may exhibit either an over-reliance or under-

reliance on robots during their collaborative efforts. 

• The concept of emotion-supportive technology, as defined in this thesis, refers 

to using technology as a tool for emotional assessment. This thesis 

recommends further research into integrating technology to assist operators in 

improving their understanding and management of emotions, as Sagar et al. 

(2023) and Shukla et al. (2024) indicate. To achieve it, this thesis emphasizes 
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the potential for personalized technologies or systems that address the unique 

characteristics of individual workers, as emotional assessment is the most 

prominent human factor in the third trend. 

 

• Recent findings by Ma et al. (2024) indicate that non-experts experience higher 

cognitive workloads than experts, regardless of task complexity. This aligns 

with the study of Gualtieri et al. (2024), as the authors emphasize the need for 

guidelines for non-experts considering individual operators’ cognitive abilities. 

On the other hand, research by Javernik et al. (2023) also reveals that 

cognitive workload varies between different levels of “worker utilization” a 

parameter calculated based on the time spent by workers on preparation and 

final assembly, relative to robot’s operating time. Acknowledging that 

operators have different cognitive abilities and that non-experts experience 

greater cognitive workload. Therefore, this thesis recommends further 

investigation into effective guidelines tailored for non-experts. Emphasizing the 

need for individualized training approaches to ensure that the training is 

effective for all operators, regardless of their cognitive skills. Furthermore, this 

recommendation is reinforced by the observation that cognitive workload is the 

most prominent human factor influencing this trend. 
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5.4 Recommendations for Companies 

5.4.1 Technological Recommendations 
 

• This thesis recommends considering dynamic task allocation systems, such 

as those proposed by Granata et al. (2024) and Calzavara et al. (2024), in 

high-workload industrial environments. The authors suggest a system that 

utilizes real-time data on human variability, allowing for task reassignment 

based on operators' physical and cognitive states. Companies that implement 

these technologies have the potential to address both physical fatigue and 

cognitive workload. By doing so, companies can improve their workers' well-

being and mitigate issues such as decreased strength, stress, musculoskeletal 

disorders, cognitive overload, disengagement, and lack of motivation. 

Additionally, these companies benefit through faster processing speeds, 

increased precision, reduced errors, and a lower risk of injury. This proposal 

is particularly relevant for medium—to high-complexity industrial 

environments, where managing operators can be challenging.  

• It is advisable to consider technologies aimed at proactive protection, such as 

those developed by Barros et al. (2023) and Polito et al. (2023). These 

innovations emphasize the importance of detecting human presence to 

prevent accidents before they potentially occur. As Lu et al. (2022) noted, the 

future of industrial safety appears to be shifting towards a more proactive 

methodology. Furthermore, the sensor introduced by Barros et al. (2023) is 

characterized by its low complexity, energy efficiency, and small footprint. 

Meanwhile, the wearable technology presented by Polito et al. (2023) 

showcases remarkable accuracy and precision rates. The implementation of 

proactive safety will reduce workplace accidents, lower costs, and increase 

productivity as workers can perform with greater confidence. These 

advancements hold great promise, not only in enhancing worker safety but 

also in aligning with the sustainable principles of Industry 5.0.  

• In work environments where stress is a significant issue, this thesis 

recommends adopting one of three approaches, listed in order of priority. First, 

implement technologies that can monitor the worker's physical state using 

physiological measurements, such as Heart Rate Variability (HRV) or  Heart 
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Rate combined with Electrodermal Activity (EDA), to provide real-time alerts 

for stress-reducing interventions like meditation. Second, optimize work 

processes when higher stress levels are detected in employees or make 

adjustments to the workplace that contribute to reducing stress. Third, 

incorporate technologies that facilitate communication between operators and 

robotic systems, as research by Aceta et al. (2022) has shown the potential 

for natural language communication to alleviate stress significantly. 

Additionally, to assess the effectiveness of this approach, a self-assessment 

questionnaire, such as the State-Trait Anxiety Inventory or the Perceived 

Stress Scale (PSS), can be used. This is consistent with the study by Ciccarelli 

et al. (2023), which highlights that exploring multiple methodologies and data 

types can improve the accuracy of stress detection; this is expanded in 

Chapter 4, section 4.2.4. 

• If a company faces multiple challenges related to the human factors mentioned 

in this thesis, i.e., physical fatigue, attention, cognitive workload, stress, trust, 

and emotional assessment, it is advisable to invest in wearable technology. 

Wearables provide extensive coverage for addressing various human factors. 

By improving these factors, the company can enhance both employee well-

being and productivity (See Table 11), ultimately resulting in a strong return on 

investment. Furthermore, wearables can address the four identified trends in 

this research (See Chapter 4), with one example presented for each trend in 

the following section: 

o Trend 1: Lu et al. (2022) suggest that wearables can enhance 

communication by recognizing gestures and actions between robots 

and humans across three levels of understanding: Instruction, Action, 

and Goal Understanding. These levels were previously discussed in 

Chapter 4, Section 4.3.1.  

o Trend 2: Picone et al. (2024) suggest gathering and analyzing biometric 

and behavioral parameters, including heart rate and stress indicators. 

These measurements can be collected through wearable devices. 

Based on these parameters, the environment responds to human 

operators by offering physical assistance. 
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o Trend 3: Chand et al. (2023) suggest personalized fatigue assessment 

that considers muscle strength. Muscle strength can be measured 

using s-EMG sensors, which are classified as wearables. 

o Trend 4: In this trend, wearables are particularly significant due to their 

potential to offer real-time feedback on workers' well-being. A notable 

example is the study by Pistolesi et al. (2024), which not only assesses 

upper-body positions using a smartwatch—considered a wearable—but 

also delivers real-time notifications through the same device, 

encouraging workers to adjust their posture as needed. 

 

5.4.2 Management Recommendations 
• Companies interested in adopting a human-centric focus, specifically on the 

influence of workers’ well-being on productivity, within the context of Industry 

5.0 should consider key collaborators with prominent researchers such as M. 

Faccio and I. Granata, both from Università degli Studi di Padova in Padua, 

Italy. 

• This thesis proposes a well-being program tailored for industrial environments. 

Based on a study by Sagar et al. (2023), an eight-week meditation program 

was implemented in an experiment, demonstrating positive outcomes in 

employee efficiency, emotional stability, and stress reduction. The authors 

noted significant improvements in workers' physical and psychological health, 

as well as in their social relationships. Referring to the human needs pyramid 

proposed by Lu et al. (2022), this program has the potential to address the 

third and fourth levels, focusing on aspects such as belongingness and 

personal and social acceptance. Overall, this program advances the human-

centric pillar of Industry 5.0. 
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